
Predicting Images using Convolutional Networks:

Visual Scene Understanding with Pixel Maps

by

David Eigen

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2015

——————————–

Rob Fergus

c� David Eigen

All Rights Reserved, 2015

Acknowledgements

I would like to thank my advisor Rob Fergus, whose optimistic enthusiasm and sense of

inquiry helped guide and push me to completing the different works in this thesis, and a

couple others as well. He was always very available and I had many valuable discussions

with him, sometimes at odd hours. I learned a lot about conducting research through

these, and many fruitful ideas grew from them, too.

I would also like to thank all of my collaborators and coauthors, and the many students

and postdocs in the lab, especially: Ross Goroshin, Dilip Krishnan, Pierre Sermanet,

Christian Puhrsch, Li Wan, Nathan Silberman, Jason Rolfe, Matthew Zeiler, Jonathan

Tompson and Arthur Szlam. I learned much from our work together and numerous

inspiring conversations.

Thanks also to Yann LeCun and David Sontag for cultivating the lab on the 12th floor,

and the stimulating discussions and group meetings. I also thank Marc’Aurelio Ranzato

for hosting me at Google during my summer internship, and Ronan Collobert for being

on my dissertation committee.

Finally and most essentially, I am grateful for all the support from my parents, family

and friends in both New York and California.

iii

Abstract

In the greater part of this thesis, we develop a set of convolutional networks that infer

predictions at each pixel of an input image. This is a common problem that arises in

many computer vision applications: For example, predicting a semantic label at each

pixel describes not only the image content, but also fine-grained locations and segmenta-

tions; at the same time, finding depth or surface normals provide 3D geometric relations

between points. The second part of this thesis investigates convolutional models also in

the contexts of classification and unsupervised learning.

To address our main objective, we develop a versatile Multi-Scale Convolutional Network

that can be applied to diverse vision problems using simple adaptations, and apply it

to predict depth at each pixel, surface normals and semantic labels. Our model uses

a series of convolutional network stacks applied at progressively finer scales. The first

uses the entire image field of view to predict a spatially coarse set of feature maps based

on global relations; subsequent scales correct and refine the output, yielding a high

resolution prediction. We look exclusively at depth prediction first, then generalize our

method to multiple tasks. Our system achieves state-of-the-art results on all tasks we

investigate, and can match many image details without the need for superpixelation.

Leading to our multi-scale network, we also design a purely local convolutional network

to remove dirt and raindrops present on a window surface, which learns to identify

and inpaint compact corruptions. We also we investigate a weighted nearest-neighbors

labeling system applied to superpixels, in which we learn weights for each example, and

use local context to find rare class instances.

In addition, we investigate the relative importance of sizing parameters using a recursive

convolutional network, finding that network depth is most critical. We also develop

a Convolutional LISTA Autoencoder, which learns features similar to stacked sparse

coding at a fraction of the cost, combine it with a local entropy objective, and describe

a convolutional adaptation of ZCA whitening.

iv

Contents

Acknowledgements iii

Abstract iv

List of Figures ix

List of Tables xii

1 Introduction 1

2 Background 5

2.1 Convolutional Networks . 5

2.2 Autoencoders . 9

3 Nonparametric Image Parsing using Adaptive Neighbor Sets 13

3.1 Introduction . 13

3.2 Approach . 16

3.2.1 Global Context Selection . 17

3.2.2 Learning Descriptor Weights . 17

3.2.3 Adding Segments . 22

3.3 Algorithm Overview . 23

3.4 Experiments . 25

3.4.1 Stanford Background Dataset . 25

3.4.2 SIFT-Flow Dataset . 26

3.5 Discussion . 30

v

4 Restoring An Image Taken Through a Window Covered with Dirt

or Rain 32

4.1 Introduction . 33

4.1.1 Related Work . 34

4.2 Approach . 36

4.2.1 Network Architecture . 36

4.2.2 Training . 38

4.2.3 Effect of Convolutional Architecture 38

4.2.4 Test-Time Evaluation . 40

4.3 Training Data Collection . 41

4.3.1 Dirt . 41

4.3.2 Water Droplets . 42

4.4 Baseline Methods . 42

4.5 Experiments . 43

4.5.1 Dirt . 43

4.5.2 Rain . 46

4.6 Discussion . 49

5 Depth Map Prediction from a Single Image using a Multi-Scale Deep

Network 51

5.1 Introduction . 51

5.2 Related Work . 53

5.3 Approach . 54

5.3.1 Model Architecture . 54

5.3.2 Scale-Invariant Error . 57

5.3.3 Training Loss . 59

5.3.4 Data Augmentation . 59

5.4 Experiments . 60

5.4.1 NYU Depth . 60

vi

5.4.2 KITTI . 61

5.4.3 Baselines and Comparisons . 62

5.5 Results . 63

5.5.1 NYU Depth . 63

5.5.2 KITTI . 64

5.6 Discussion . 65

6 Predicting Depth, Surface Normals and Semantic Labels with a Com-

mon Multi-Scale Convolutional Architecture 67

6.1 Introduction . 67

6.2 Related Work . 68

6.3 Model Architecture . 70

6.4 Tasks . 73

6.4.1 Depth . 73

6.4.2 Surface Normals . 74

6.4.3 Semantic Labels . 74

6.5 Training . 75

6.5.1 Training Procedure . 75

6.5.2 Data Augmentation . 76

6.5.3 Combining Depth and Normals . 77

6.6 Performance Experiments . 77

6.6.1 Depth . 77

6.6.2 Surface Normals . 79

6.6.3 Semantic Labels . 82

6.7 Probe Experiments . 88

6.7.1 Contributions of Scales . 88

6.7.2 Effect of Depth and Normals Inputs 89

6.8 Discussion . 90

vii

7 Understanding Deep Architectures using a Recursive Convolutional

Network 92

7.1 Introduction . 92

7.2 Related Work . 94

7.3 Approach . 94

7.3.1 Instantiation on CIFAR-10 and SVHN 95

7.4 Experiments . 97

7.4.1 Performance Evaluation . 97

7.4.2 Effects of the Numbers of Feature maps, Parameters and Layers . 98

7.5 Discussion . 104

8 Convolutional Unsupervised Methods 106

8.1 Introduction . 106

8.2 Convolutional LISTA Autoencoder . 107

8.2.1 Background . 107

8.2.2 Single Layer . 108

8.2.3 Stacking Multiple Layers . 110

8.3 Entropy Prototypes . 114

8.4 Convolutional ZCA Whitening . 118

9 Conclusion 121

Bibliography 124

viii

List of Figures

1.1 Bounding-Box Detection Example . 2

1.2 Pixel-Map Inference Example . 2

2.1 Basic Convolutional Network . 6

2.2 Basic Autoencoder . 9

3.1 Adaptive Nearest-Neighbor Weighting . 18

3.2 Context Indexing Diagram . 23

3.3 Evaluation on Stanford Background Dataset 26

3.4 Evaluation on SIFT-Flow Dataset . 27

3.5 Evaluation on SIFT-Flow Dataset (additional test split) 28

3.6 Effect of Retrieval Set Size . 29

3.7 Visualization of Weights . 29

3.8 Comparison of Class Distributions using Context Index 30

3.9 Example Images . 31

4.1 Illustrative Example of Rain Removal . 32

4.2 Network Weights . 39

4.3 Effect of Convolution on Patch Errors . 40

4.4 Training Data Examples . 42

4.5 Dirt Removal Comparison . 43

4.6 Preservation of Untargeted Noise . 45

4.7 Water Droplet Removal Comparisons . 47

4.8 Real Rain Removal Example . 48

ix

4.9 Smartphone Application Example . 49

5.1 Model architecture . 55

5.2 Coarse Network Output Weights . 56

5.3 Qualitative Comparison with Make3D . 64

5.4 Example Depth Predictions . 66

6.1 Model architecture . 72

6.2 Example depth results . 78

6.3 Comparison of surface normal maps. 80

6.4 Example surface normals results . 81

6.5 Example semantic labeling results: siftflow 85

6.6 Example semantic labeling results for Pascal VOC 2011. For each image,

we show RGB input, our prediction, and ground truth. 86

6.7 Example semantic labeling results: nyudepth 87

7.1 Model architecture . 96

7.2 CIFAR-10 performance by network size 98

7.3 SVHN performance by network size . 99

7.4 Error by number of layers . 101

7.5 Error by number of parameters . 102

7.6 Comparison controlling for feature maps and layers 103

7.7 Comparison controlling for parameters and layers 104

8.1 Convolutional LISTA Autoencoder architecture 109

8.2 Layer 1 filters . 110

8.3 Layer 2 reconstructions . 112

8.4 Layer 3 reconstructions . 113

8.5 Filter weights using entropy cost . 116

8.6 Mean nonzero activation by unit . 116

8.7 MINST reconstructions . 117

x

8.8 NORB reconstructions . 117

8.9 Singular Values after Conv. ZCA . 119

8.10 Convolutional ZCA Kernels . 119

8.11 Convolutional ZCA Examples . 120

xi

List of Tables

3.1 Scene Parser Timings . 29

4.1 PSNR Comparison for Synthetic Dirt . 45

5.1 Depth Predictions Comparison on the NYUDepth dataset 64

5.2 Depth Predictions Comparison on the KITTI dataset. 65

6.1 Depth evaluation . 79

6.2 Surface normals evaluation . 80

6.3 Semantic labeling on NYUDepth v2 . 82

6.4 Semantic labeling: SIFT Flow . 83

6.5 Semantic labeling on Pascal VOC 2011. 84

6.6 Individual class performance comparisons. 88

6.7 Contributions of scales . 89

6.8 Comparison of predicted and true depth inputs 89

7.1 Performance comparisons . 99

8.1 Unsupervised features classification error 111

xii

Chapter 1

Introduction

Computer vision systems may infer numerous types of estimates in order to relate an

input image to the scene it captures, to the world in which the scene is a part, and

to our own understanding of the world. For example, object recognition systems infer

objects present in a scene by predicting class labels (e.g. “bed”, “picture”), often along

with the objects’ locations, e.g. with a bitmask or bounding box. Such a detection

system is depicted in Fig. 1.1. These systems, however, scratch only the surface of

possible representations: beyond labels and bounding boxes, many other useful types of

understandings can be inferred as well. For example, geometric estimates such as world-

space locations, depth maps or surface normals; per-pixel object labels that provide

more detailed location information; object attributes that provide more fine-grained

semantic descriptions; affordances relating objects to their potential human interactions;

even decompositions of the image into those portions depicting the underlying scene and

those introduced by artifacts of the image capture and storage.

While each of these problems might be tackled in different ways and have numerous

choices for output representation, this thesis focuses on a prevalent theme of inferring

2D pixel maps from a single input image. Pixel map prediction arises naturally for many

problems, several of which are depicted in Fig. 1.2. Finding semantic class labels for each

1

Figure 1.1: Object detection using bounding boxes. A ConvNet makes predictions at
multiple locations and scales, which are then merged. Figure reproduced from [113], to
which the author contributed.

Input Image NormalsDepth Labels

Figure 1.2: Inferring pixel maps for depth, surface normals and semantic labels using a
convolutional network. Predictions made by the system described in Chapter 6.

pixel provides information both on which objects are in the scene (“what” is present)

and their image location and extent (“where” they are). Estimating the depth from

camera at each pixel provides a more 3D geometric understanding of the scene, as does

per-pixel estimation of surface normals; these may be useful for physical applications,

including robotics and 3D modeling. Likewise, denoising an image extracts relevant low-

level structures away from corrupted input, producing a clean version of the image as

another type of pixel map.

The following chapters explore systems for each of these tasks in turn, and focus in

particular on convolutional networks that are able to learn their own internal feature

representations at successive layers. Such systems require little or no hand-tuning of

low- or mid-level feature descriptors, allowing intermediate representations to be learned

from the data directly. These systems have recently achieved large performance gains,

most notably for current object classification and detection tasks, and this thesis further

extends their application to produce 2D outputs that align each pixel in the input with

a set of values describing the scene content.

2

We start out by investigating a system to perform pixelwise semantic labeling in Chap-

ter 3, using superpixels and hand-crafted features. By learning weights for each feature

descriptor in a k-nearest-neighbor classification scheme, we see the benefit of automati-

cally tuning the relative importance for each feature and database point (although not

yet the features themselves). This anticipates our later work in multilayer networks by

extending training further upstream in the dataflow. In addition, we create descriptors

for mid-level context information that we use to augment the number of rare class in-

stances available at classification time. We also evaluate a rough use of global context

by varying the number of best-matching database images used for k-NN queries for each

image; the latter has a loose relationship to our later use of global context in multi-scale

convolutional networks.

We then apply Convolutional Networks to predict pixel maps. In Chapter 4, we employ a

ConvNet to remove dirt or raindrops present on a window surface in front of the camera,

thus restoring the underlying scene. This network is trained end-to-end to produce clean

output images, and is able to estimate low-level natural image structures using purely

local fields of view. Here we also find a benefit to training convolutionally, i.e. through

the final combination of strided local predictions using an averaging step, and analyze

the effect of this with an illustrative example.

Chapter 5 then combines ConvNets at both global and local levels to infer depth maps.

In contrast to the denoising application, we find the global view is essential for depth

prediction, and show how we integrate this view along with the original image at a local

scale to produce detailed pixel-map outputs. The resulting system is simple, using a

sequence of two networks that first produces a coarse estimate of the depth, then refines

it to details in the original image; we obtain state-of-the-art performance in this task.

In Chapter 6 we extend the Multi-Scale ConvNet of the previous chapter to infer not

only depth, but also surface normals and semantic labels at each point, and implement

a third refinement scale to obtain higher resolution outputs. These provide both richer

geometric descriptions and detailed class descriptions, and we achieve state-of-the-art

3

performance for these tasks as well. We compare our semantic labeling system to the

one we looked at originally in Chapter 3, and find that our newer method achieves

greatly better accuracy, without the need for either hand-crafted feature descriptors or

superpixel preprocessing.

Following this, in Chapter 7 we look at some of the factors involved in tuning convolu-

tional network sizes, in the context of a single-object classification task. By constructing

a network whose weights are tied between layers, we find that adding layers alone can

lead to better performance. Moreover, through a series of control experiments, we also

measure the relative effects of the number of feature maps and number of parameters;

our results suggest that layers and parameters are the most important factors.

We also look at three ideas using related convolutional models for unsupervised feature

learning in Chapter 8: We introduce Convolutional LISTA autoencoders, which emulate

Deconvolutional sparse-coding networks using feed-forward autoencoders, and are able

to learn similar features at a small fraction of the cost. We then explore an entropy

objective that encourages feature map units to factorize into a few prototype templates

with high activation, plus many deformation units concerned that edit reconstruction

details. We lastly describe a convolutional ZCA whitening method that can be applied

locally to arbitrarily large images using a single convolution kernel.

Finally, we discuss some future research directions and conclude in Chapter 9.

4

Chapter 2

Background

2.1 Convolutional Networks

Convolutional networks have been used for many computer vision applications, starting

from their roots in digit classification [33, 77], to more recent systems for image classi-

fication and object detection [73, 113, 116, 125], as well as many others such as image

denoising [65], pose estimation [131, 94] and stereo depth [145, 87]. They have also been

applied with great success to speech recognition [95, 57] and natural language process-

ing [14, 15]. The success of these systems stems from their ability to learn both image

features, as well as the tiers of rules needed to combine them, all from the data itself. As

a consequence, they can leverage large amounts of data to maximize their effectiveness,

while still maintaining a compact size that can be deployed to future test cases.

A basic convolutional network, such as the one in Fig. 2.1, consists of applying multi-

ple layers of learned convolution kernels together with elementwise nonlinearities, often

intermixed with spatial pooling (subsampling). Each convolutional hidden layer is fed

5

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Figure 2.1: A convolutional network for classification, from LeCun et al. [77].

forward from the layer below:

h0 = x

hl+1 = pooll(f(Wl ∗ hl + bl)), l = 0, . . . , L

where x is the input image, hl is the hidden layer activations at layer l, Wl and bl are

the learned convolution kernel and feature bias, f is an activation function applied to

each unit (e.g. rectification/thresholding; sigmoid), and pooll is the (optional) pooling at

layer l. Common pooling schemes include max-, l2 or average-pooling [7, 67], or strided

convolutions, which correspond to weighted-sum pooling with trainable weights. These

can serve to enforce local invariance to small feature movements, and/or increase the

model’s field of view more aggressively.

For a classification model, one or more fully-connected layers are placed on top, followed

by a softmax output normalization, which produces a sum-normalized distribution over

the classes:

y = softmax(WChL + bC), where softmax(z) =
ez�
i e

zi

These models are commonly trained using backpropagation and stochastic gradient de-

scent [77]. After defining the error to be optimized using a loss function, e.g. cross-

entropy classification loss, the gradient of the error with respect to all model parameters

is found using the chain rule through the hidden layers.

6

In the OverFeat detection system [113] (joint work between Pierre Sermanet, myself, Xi-

ang Zhang, Michael Mathieu, Rob Fergus and Yann LeCun), we apply the fully-connected

classification layers themselves convolutionally, using 1 × 1 convolution filters. This is

equivalent to applying an entire classification network to large overlapping windows of

the input image, but it applies all networks at once from the bottom up, thus sharing

computation for the overlap regions. We simultaneously learn an object bounding box

regressor, also applied at each input window, and then merge all the predictions together.

In so doing, we use the multiple class/box predictions to vote on the final result, greatly

improving accuracy. Furthermore, by applying the network at several different scales,

we can both better align different sized objects to the ConvNet windows and boost the

number of prediction samples, improving accuracy even more. This system is depicted

in Fig. 1.1.

In any network, each convolution layer produces a set of output values at each spatial

location (a “feature map”), using a weighted combination of the inputs from a local area.

Convolutions have several intuitive interpretations:

• Pattern response filtering

A unit responds when a template hits a corresponding pattern in the input.

• Local weighted voting

Different feature activations vote on whether to make a next-layer unit active.

• Spatially-constrained linear operations

The input is linearly transformed.

• Weighted average pooling/unpooling

The input is subsampled (or upsampled) according to a weighted sum.

• Mixtures of output patch templates

An output patch is splatted into a canvas.

By using local connections, as opposed to full all-to-all connections, ConvNets take

7

advantage of local correlation and long-range decorrelation present in images, particularly

at lower levels. If a fully connected network were trained for the same task, with infinite

diverse data, the vast majority of connections would end up being local, and with the

same weights replicated among most spatial locations. Thus convolutions provide a

double-win: They regularize by enforcing zeros for long-range connections that might

not otherwise be learned from a smaller finite dataset, while at the same time greatly

reduce computation by not considering these zeros during propagation.

Many kinds of regularization can also be used to improve generalization and make better

use of limited training data. One of the most effective is data augmentation: In the best

case, adding random perturbations of the provided data adds a large diverse set of new

samples; it can also encourage the model to be invariant to transformations not easily

encoded in the architecture, and derails its ability to memorize exact samples. Other

common techniques include several that average over injected training-time stochasticity,

such as Dropout [122] or DropConnect [139], l2 weight decay, and ensemble voting.

Features learned by convolutional networks at lower layers have analogies in both bio-

logical visual behaviors, as well as many hand-crafted computer vision techniques. In

particular, the first convolutional layer in most networks tends to learn oriented gabors

and color contrasts, which are then pooled. These features are then comprised chiefly of

aggregated quantized edge orientations. Such representations can explain many behav-

iors observed in the primary visual cortex [64].

In addition, computer vision features like HoG [29] or SIFT [84] perform many of the same

edge-summary operations: Each also identifies prevalent edge orientations, and combines

them over spatial areas using histograms. Systems such as spatial pyramid matching

[76] or deformable parts models [29] combine these further over larger areas; DPMs in

particular are in essence ConvNets with few layers and large offsets [138]. However,

hand-created descriptors ignore much relevant information [137], fundamentally lost in

their design. Moreover, while low-level features can be possible to intuit, it is often

far from clear how to combine them. The need for choices that can limit a model’s

8

effectiveness only worsens at higher layers, since these are where the system must make

many of its eventual decisions.

Convolutional networks overcome this by automatically learning the parameters that

define both the low-level features themselves, as well as their combination. This thesis

focuses on applications of convolutional networks beyond classification and detection

that require the prediction of pixel maps, i.e. 2D arrays containing inferred values at

each pixel location.

2.2 Autoencoders

The use of neural networks to produce pixel maps has a close relation to autoencoders,

which also output an image using a neural network. However, instead of predicting a

pixel map of a different mode, the aim of an autoencoder is to reconstruct the original

input under constraints. These have been used in particular for learning initial hidden

layer representations in pretraining supervised networks [59, 37]. They also have close

connections to both Sparse Coding and Restricted Boltzmann Machines.

W1

W2

x

h

x ^

x

h1

x ^

h2

h3

W1

W2

x

h

x ^

x

h1

x ^

h2

h3

(a) (b)

Figure 2.2: An autoencoder (a) and stacked deep autoencoder (b).

At its most basic, an autoencoder reconstructs the input from a single hidden layer;

multiple hidden layers may be stacked as well to form a deep autoencoder (see Fig. 2.2).

9

In the case of a single layer, the output is formed using a linear combination of hidden

activations, which are themselves produced according to a linear combination of the

input and nonlinear activation function:

h1 = f(W1x+ b1), x̂ = W2h1 + b2

Here, x and x̂ are the input and its reconstruction, h1 is the hidden layer activation units,

W1 and W2 are weight matrices, b1 and b2 the biases, and f is the activation function

(e.g. sigmoid, rectified linear).

The weights W1 and W2 are optimized according to an objective function that defines the

desired relationship between the input x and its reconstruction x̂. For an autoencoder,

we want these to be equal; a common objective in this case is the l2 error,

L =
1

2

N�

i=1

||xi − x̂i||2

where i ranges over all images in the training dataset.

Note if f is the identity, x̂ is a linear projection of x, and the optimal solution for W2W1

with respect to l2 error is a PCA projection to the first k principal components of the

data, where k is the size of h1 [3]. That is, W2W1 = V V T where V are the first k PCA

directions of the training data, and the biases b1 and b2 are used to subtract and add

back the mean of the training data. If we also enforce W1 = W T
2 = W , then W = V T

up to isometry.

With a nonlinear choice of f , the solution will start to move away from PCA. Additional

constraints or regularizations make the learned behavior more different yet. Common

variations include dimension bottlenecks [59], sparsity-inducing constraints [100, 103, 37]

or contractive costs [102]. A somewhat recent technique is the denoising autoencoder

[135, 136], which introduces random noise to the input and forces the network to learn

to reconstruct the full original image from the incomplete data. To do so, it must learn

10

correlations between parts of the input so that the missing regions can be restored.

Combining the l2 reconstruction with an additive l1 cost encourages sparser hidden

representations, linking autoencoders with sparse coding. Sparse coding aims to find a

hidden code that reconstructs the input, but with few active units; a prevalent form [93]

is to minimize the cost

ESC(z;W) = ||x−W T z||22 + λ|z|1

where z is the code vector (hidden layer), and W T is a decoding dictionary. Iterative

algorithms are often used to infer a code z given the input x [5], however sparse coding

may also be combined with feed-forward networks to quickly generate approximations

of the code, e.g. PSD and LISTA [69, 45, 105]. Deconvolutional networks [147, 148]

use successive layers of convolutional sparse coding to learn progressively higher-level

features from unlabeled images.

Autoencoders have a particularly close connection to Restricted Boltzmann Machines

(RBMs). A RBM describes a probability distribution, parameterized using a weight

matrix connecting visible units with hidden units. A simple instance is where visible

and hidden units are Bernoulli random variables (i.e. can take on the discrete states of

either zero or one). However, to model continuous-valued images x, a common method

is to use Gaussian units for the visibles, in which case the energy is

EgbRBM (x, h) = hTWx− bThh+
1

2
xTx− bTxx

PgbRBM (x, h) =
1

Z
e−EgbRBM (x,h)

Here, x is a vector of visible units (an image), h a vector of hidden units, bx and bh

are the visible and hidden biases, and W is the weight matrix connecting visibles and

hiddens.

The probability of an image x is obtained by marginalizing over h; this has the following

11

associated energy (called “free energy”):

EgbRBM (x) = − log
�

h∈{0,1}k
exp(−EgbRBM (x, h))

=
1

2
xTx− bTxx−

k�

i=1

log(1 + exp(Wi · x+ bh,i))

Taking the derivative with respect to x and setting it to 0, we find that the energy has

critical points where

x =
k�

i=1

W T
i

exp(Wi · x+ bh,i))

1 + exp(Wi · x+ bh,i))
+ bx

= W Tσ(Wx+ bh) + bx

The right hand side is a feed-forward autoencoder with sigmoid hidden activation σ and

weights identical to the RBM; a fixed point of this autoencoder is a critical point of the

RBM energy. In addition, the derivative of the RBM energy is equal to the difference

between the input x and its autoencoder reconstruction (i.e. the reconstruction error).

Highly related in a more general setting, Alain et al. [1] show that any autoencoder

trained with a contractive or denoising method models the derivative of the log data

density, in the sense that the difference between the input and its reconstruction ap-

proaches the log density derivative. Although it is tempting to think of the autoencoder

fixed points as energy minima, [1] note that some of these must be maxima or saddles,

considering paths that lie between two minima.

Beyond applications to feature learning and density estimation, neural networks with

similar architectures are starting to be used for image prediction tasks, such as image

denoising [9, 10, 65, 143, 150], object detection [126] and semantic segmentation [16, 98].

This thesis explores this line of research further, applying image-generating convolutional

networks to multiple tasks.

12

Chapter 3

Nonparametric Image Parsing

using Adaptive Neighbor Sets

The work presented in this chapter appeared in CVPR 2012 [22], and was a collaboration

with Rob Fergus.

3.1 Introduction

This chapter examines a k-nearest-neighbors (kNN) voting approach to dense semantic

labeling that uses multiple hand-designed descriptors to classify super-pixels. This is

an effective brute-force mechanism for using a database of labeled example regions, and

serves as an essential point of comparison for our later convolutional network system in

Chapter 6.

While simple, such kNN systems make only limited use of the data available. Features

must be hand-tuned, and feature sets and data both must be carefully calibrated so

that the different sources contribute relatively similar amounts and no single source

dominates. Furthermore, in the semantic labeling task there may be a potentially large

number of different label classes, stemming from the high diversity of the visual world,

13

and the distribution of classes is often highly uneven (see Fig. 3.8). kNN classifiers

present a trade-off here: They naturally handle large label sets, since one need only

consider the labels of those points retrieved during test queries; on the other hand, rare

class examples are hard to find and underrepresented in query results. Consequently,

many classes will have a small number of example instances even using a large dataset,

making it hard to train good classifiers.

Starting from the kNN “superparsing” method of Tighe and Lazebnik [128] as a baseline,

we add two novel mechanisms that help address these issues:

1. In an off-line training phase, we learn a set of weights for each descriptor type of

every segment in the training set. The weights are trained to minimize classification

error in a weighted nearest-neighbor scheme. Individually weighting each descriptor

has the effect of introducing a distance metric that varies throughout the descriptor

space. This enables it to overcome the limitations of a global metric, as outlined

above. It also allows us to discard outlier descriptors that would otherwise hurt

performance (e.g. from segmentation errors).

2. At query-time, we adapt the set of points used by the weighted-NN classification

based on context from the query image. We first remove segments based on a

global context match. Crucially, we then add back previously discarded segments

from rare classes. Here we use the local context of segments to look up rare class

examples from the training set. This boosts the representation of rare classes within

the kNN sets, giving a more even class distribution that improves classification

accuracy.

The overall theme of these methods is the customization of the dataset for a particular

query to improve performance.

In addition to Tighe and Lazebnik [128, 129], other related non-parametric approaches

to recognition include: the SIFT-Flow scene parsing method of Liu et al. [80, 81]; scene

classification using Tiny Images by Torralba et al. [132] and the Naive-Bayes NN ap-

14

proach from Boiman et al. [6]. However, none of these involve re-weighting of the data,

and context is limited to a CRF at most.

Our classification and training procedure is much related to Neighborhood Component

Analysis [38]. NCA also learns a distance metric for kNN classification using leave-

one-out training. However, the metric is parameterized by a single quadratic distance

matrix applied to all feature descriptors. By contrast, we find neighbors using unmodified

descriptors, then tune the weights of each to influence the class predictions, effectively

learning a metric that varies according to the local region. It is possible that the two

approaches may be combined, however we did not explore that in this work.

Our re-weighting approach has interesting similarities to Frome et al. [32] (and related

work from Malisiewicz & Efros [85, 86]). Motivated by the inadequacies of a single global

distance metric, they use a different metric for each exemplar in their training set, which

is integrated into an SVM framework. The main drawback to this is that the evaluation

of a query is slow (∼minutes/image). The weights learned by our scheme are equivalent

to a local modulation of the distance metric, with a large weight moving the point closer

to a query, and vice-versa. Furthermore, the context-based training set adaptation in

our method also effects a query-dependent metric on the data.

The re-weighting scheme we propose also has connections to a traditional machine learn-

ing approach called editing [20, 71]. In edting, individual points in the dataset may be

modified, however these are usually binary in that they either keep or completely remove

each training point. Of this family, the most similar to ours is Paredes and Vidal [96],

who also use real-valued weights on the points. However, their approach does not han-

dle multiple descriptor types and is demonstrated on a range of small text classification

datasets.

There is extensive work on using context to help recognition [61, 92, 133, 134]; the

most relevant approaches being those of Gould et al. [41, 42] and in particular Heitz &

Koller [55] who use “stuff” to help find “things.” Heitz et al. [54] use similar ideas in a

15

sophisticated graphical model that reasons about objects, regions and geometry. These

works have similar goals regarding the use of context but quite different methods. Our

approach is simpler, relying on NN lookups and standard gradient descent for learning

the weights.

Our work also has similar goals to multiple kernel learning approaches (e.g. [35]) which

combine weighted feature kernels, but the underlying mechanisms are quite different: we

do not use SVMs, and our weights are per-descriptor. By contrast, the weights used in

these methods are constant across all descriptors of a given type. Finally, Boosting [109]

is an approach that weights each datapoint individually, as we do, but it is based on

parametric models rather than non-parametric ones.

3.2 Approach

Our approach builds on the nearest-neighbor voting framework of Tighe and Lazebnik

[128] and uses three distinct stages to classify image segments: (i) global context selec-

tion; (ii) learning descriptor weights; (iii) adding local context segments. Stages (i) and

(ii) are used in off-line training, while (i) and (iii) are used during evaluation. While

stage (i) is adopted from [128], the other two stages are novel and the main focus of our

paper.

A query image Q consists of a set of super-pixel segments q, each of which we need to

classify into one of C classes. The training dataset T consists of super-pixel segments

s, taken from images I1 to IM . The true class c∗s for each segment in T is known.

Each segment is represented by D different types of descriptors (the same set of 19

used in [128]. These include quantized SIFT, color, position, shape and area features.

Additionally, each image Im has a set global context descriptors, {gm} that capture the

content of the entire image; these are computed in advance and stored in kd-trees for

efficient retrieval.

16

3.2.1 Global Context Selection

In this stage, we use overall scene appearance to remove descriptors from scenes bearing

little resemblance to the query. For example, the segments taken from a street scene are

likely to be distractors when trying to parse a mountain scene. Thus their removal is

expected to improve performance. A secondary benefit is that the subsequent two stages

need only consider a small subset of the training dataset T , which gives a considerable

speed-up for big datasets.

For each query Q we compute global context descriptors {gq}, which consists of 4 types:

(i) a spatial pyramid of vector quantized SIFT [76]; (ii) a color histogram spatial pyramid

and (iii) Gist computed with two different parameter settings [92]. For each of the types,

we find the nearest neighbors amongst the training set {gm}. The ranks across the four

types of context descriptor are averaged to give an overall ranking. We then form a

subset G of the segment-level training database T that consists of segments belonging

to the top v images from our image-level ranking. We denote the global match set

G = GlobalMatches(Q, v). v is an important parameter whose setting we explore in

Section 5.4.

3.2.2 Learning Descriptor Weights

To learn the weights, we adopt a leave-one-out strategy, using each segment s (from

image Im) in the training dataset T as probe segment (a pretend query). The weights of

the neighbors of s are then adjusted to increase the probability of correctly predicting

the class of s.

For a query segment s, we first compute the global match setGs = GlobalMatches(Im, v).

Let the set of descriptors of s be Ds. Following [128], the predicted class ĉ for each seg-

ment is the one that maximizes the ratio of posterior probabilities P (c|Ds)/P (c̄|Ds).

After the application of Bayes rule using a uniform class prior1 and making a naive-

1Using the true, highly-skewed, class distribution P (c)/P (c̄) dramatically impairs performance for

17

(a) (b)

(c) (d)

Figure 3.1: Toy example of our re-weighting scheme. (a): Initially all descriptors have
uniform weight. (b), (c) & (d): a probe point is chosen (cross) and points in the neighbor-
hood (black circle) of the same class as the probe have their weights increased. Points
of a different class have their weights decreased, so rejecting outlier points. In prac-
tice, (i) there are multiple descriptor spaces, one for each descriptor type and (ii) the
GlobalMatch operation removes some of the descriptors.

Bayes assumption for combining descriptor types, this is equivalent to maximizing the

product of likelihood ratios for each descriptor type:

ĉ = arg max
c

L(s, c) = arg max
c

�

d∈Ds

P (d|c)
P (d|c̄) (3.1)

The probabilities P (d|c) and P (d|c̄) are computed using nearest-neighbor lookups in the

space of the descriptor type of d, over all segments in the global match set G. In the

un-weighted case (i.e. no datapoint weights), this is:

P (d|c) ∝ pd(c) =
nN
d (c)

nd(c)
, P (d|c̄) ∝ p̄d(c) =

n̄N
d (c)

n̄d(c)

where nN
d (c) is the number of points of class c in the nearest neighbor set N of d,

determined by taking the closest k neighbors of d. 2 nd(c) is the total number of points

in class c. n̄N
d (c) is the number of points not of class c in the nearest neighbor set N of d

rare classes.
2We also include all points at zero distance from d, so nN

d (c) is occasionally larger than k.

18

(i.e.
�

c� �=c n
N
d (c�)), and similarly for n̄d. Conceptually, both nN

d (c) and nd(c) should be

computed over the match set G; in practice, this sample may be small enough that using

G just for nN
d (c) and estimating nd(c) over the entire training database T can reduce

noise.

To eliminate zeros in P (d|c̄), we smooth the above probabilities using a smoothing factor

t:

qd(c) = (nN
d (c) + n̄N

d (c))2 · pd(c) + t (3.2)

q̄d(c) = (nN
d (c) + n̄N

d (c))2 · p̄d(c) + t (3.3)

and define the smoothed likelihood ratio Ld(c):

Ld(c) =
qd(c)

q̄d(c)

We now introduce weights wdi for each descriptor d of each segment i. This changes the

definitions of nd and nN
d :

nd(c) =
�

i∈T
wdiδ(c

∗
i , c) = W T∆

nN
d (c) =

�

i∈N
wdiδ(c

∗
i , c) = W T∆N

where c∗i is the true class of point i and T is the training set. Note that when using

only the match set G to estimate nd(c), the sum over T need only be performed over G.

In matrix form, W is the vector of weights wdi, and ∆ is the |T | × |C| class indicator

matrix whose ci-th entry is δ(ci, c). For neighbor counts, ∆N is the restriction of ∆ to

the neighbor set N — that is, its entries in rows i /∈ N are zero.

Similarly, for n̄d(c) and n̄N
d (c) we use the complement ∆̄ = 1−∆:

n̄d(c) =
�

i∈T
wdiδ(c

∗
i , c̄) = W T ∆̄

19

n̄N
d (c) =

�

i∈N
wdiδ(c

∗
i , c̄) = W T ∆̄N

To train the weights, we choose a negative log-likelihood loss:

J(W) =
�

s∈T
Js(W) =

�

s∈T
− logL(s, c∗) + log

�

c∈C
L(s, c)

=
�

s∈T



−
�

d∈Ds

logLd(c
∗) + log

�

c∈C

�

d∈Ds

Ld(c)





The derivatives with respect to W are back-propagated through the nearest neighbor

probability calculations using 5 chain rule steps. The vector of weights Wd (the weights

for all segments on descriptor type d) is updated as follows:

Step 1:

∂nd

∂Wd
= ∆,

∂nN
d

∂Wd
= ∆N ,

∂n̄d

∂Wd
= ∆̄,

∂n̄N
d

∂Wd
= ∆̄N

Step 2:

∂pd
∂Wd

= (∆N − pd ·∆)/nd,
∂p̄d
∂Wd

= (∆̄N − p̄d · ∆̄)/n̄d

Step 3:

∂qd
∂Wd

= 2(nN
d + n̄N

d) · p · 1N + (nN
d + n̄N

d)2 · ∂pd
∂Wd

∂q̄d
∂Wd

= 2(nN
d + n̄N

d) · p̄ · 1N + (nN
d + n̄N

d)2 · ∂p̄d
∂Wd

Step 4:

∂ logLd

∂Wd
=

1

qd

∂qd
∂Wd

− 1

q̄d

∂q̄d
∂Wd

Step 5:

∂Js
∂Wd

= −∂ logLd

∂Wd
(c∗) +

1�
c L(c)

�

c

L(c) · ∂ logLd(c)

∂Wd

where 1N = ∆N + ∆̄N , and products and divisions are performed element-wise. The

20

weight matrix is updated using gradient descent:

W ← W − η
∂Js
∂W

where η is the learning rate parameter. In addition, we enforce positivity and upper

bound constraints on each weight, so that 0 ≤ wdi ≤ 1 for all d, i. We initialize the

learning with all weights set to 0.5 and η set to 0.1.

The above procedure provides a principled approach to maximizing the classification

performance, using the same naive-Bayes framework of [128]. It is also practical to

deploy on large datasets: although the the time to compute a single gradient step is

O(|T ||C|), we found that fixing nd and n̄d to their values with the initial weights yields

good performance, and limits the time for each step to O(|G||C|).

Effect of the Smoothing Parameter

Aside from smoothing the NN probabilities, the smoothing parameter t also modulates

Ld(c) as a function of nd(c), the number of descriptors of each class. As such, it gives a

natural way to bias the algorithm toward common classes or toward rare ones.

To see this, let us assume nN
d (c) + n̄N

d (c) = k (which is usually the case; see footnote 2).

This lets us rearrange Ld(c) to obtain (omitting d for brevity and defining u = t/k2):

L(c) =
nN (c)n̄(c) + u · n(c)n̄(c)
n̄N (c)n(c) + u · n(c)n̄(c)

Note that n(c)n̄(c) depends only on the frequency of class c in the dataset, not on the

NN lookup. The influence of t therefore becomes larger for progressively more com-

mon classes. So by increasing t we bias the algorithm toward rare classes, an effect we

systematically explore in Section 5.4.

21

3.2.3 Adding Segments

The global context selection procedure discards a large fraction of segments from the

training set T , leaving a significantly smaller match set G. This restriction means that

rare classes may have very few examples in G — and sometimes none at all. Conse-

quently, (i) the sample resolution of rare classes is too small to accurately represent their

density, and (ii) for NN classifiers that use only a single lookup among points of all

classes (as ours does), common points may fill a search window before any rare ones are

reached. We seek to remedy this by explicitly adding more segments of rare classes back

into G.

To decide which points to add, we index rare classes using a descriptor based on semantic

context. Since the classifier is already fairly accurate at common background classes, we

can use its existing output to find probable background labels around a given segment.

The context descriptor of a segment is the normalized histogram of class labels in the

50 pixel dilated region around it (excluding the segment region itself). See Fig. 3.2(a) &

(b) for an illustration of this operation, which we call MakeContextDescriptor.

To generate the index, we perform leave-one-out classification on each image in the

training set, and index each super-pixel whose class occurs below a threshold of r times

in its image’s match set G. In this way, the definition of a rare class adapts naturally

according to the query image. This the BuildContextIndex operation.

When classifying a test image, we first classify the image without any extra segments.

These labels are used to generate the context descriptors as described above. For each

super-pixel, we look up the nearest r points in the rare segments index, and add these to

the set of points G used to classify that super-pixel. See Algorithm 2 for more details.

22

?

ContextIndex

Class Context Descriptor

Additional
Segments:

(a) (b)

(c)

Classes

……... ……...

Figure 3.2: Context-based addition of segments to the global match set G. (a): Segment
in the query image, surrounded by an initial label map. (b): Histogram of class labels,
built by dilating the segment over the label map, which captures the semantic context of
the region. This is matched with histograms built in the same manner from the training
set T . (c): Segments in T with a similar surrounding class distribution are added to G.

3.3 Algorithm Overview

The overall training procedure is summarized in Algorithm 1. We first learn the weights

for each segment/descriptor, before building the context index that will be used to add

segments at test time. Note that we do not rely on ground truth labels for constructing

this index, since not all segments in T are necessarily labeled. Instead, we use the

predictions from our weighted NN classifier. NN algorithms work better with more data,

so to boost performance we make a horizontally flipped copy of each training image and

add it to the training set.

The evaluation procedure, shown in Algorithm 2, involves two distinct classifications.

The first uses the weighted NN scheme to give an initial label set for the query image.

Then we lookup each segment in the ContextIndex structure to augment G with

more segments from rare classes. We then run a second weighted classification using this

extended match set to give the final label map.

23

Algorithm 1 Training Procedure
1: procedure LearnWeights(T)
2: Parameters: v, k
3: Wdi = 0.5
4: for all segments s ∈ T do
5: G =GlobalMatches(Im, v)
6: NN-lookup to obtain ∆N , ∆̄N

7: Compute ∂Js
∂Wd

8: Wd ← Wd − η ∂Js
∂Wd

9: end for
10: end procedure

11: procedure BuildContextIndex(T,W)
12: Parameters: v, k
13: ContextIndex = ∅
14: for all I ∈ T do
15: G =GlobalMatches(I, v)
16: label map = Classify(I,G,W, k)
17: for all Segments s in I with rare ĉs in G do
18: desc = MakeContextDescriptor(s, label map)
19: Add (desc → I, s) to ContextIndex
20: end for
21: end for
22: end procedure

23: function Classify(I,G,W, k)
24: for all segments s ∈ image I do
25: kNN-lookup in G to obtain ∆N , ∆̄N

26: Use weights W to compute nN
d (c), n̄N

d (c) and Ld(c)
27: ĉs = argmax

c

�
d Ld(c)

28: end for
29: return label map ĉ
30: end function

Algorithm 2 Evaluation Procedure
1: procedure EvaluateTestImage(Q)
2: Parameters: v, k, r
3: G =GlobalMatches(Q, v)
4: init label map = Classify(Q,G,W, k)
5: for all segments s ∈ Q do
6: desc = MakeContextDescriptor(s, init label map)
7: Hs = ContextMatches(desc,ContextIndex,r)
8: end for
9: final label map = Classify(Q,G ∪H,W, k)

10: end procedure

24

3.4 Experiments

We evaluate our approach on two datasets: (i) Stanford background [41] (572/143 train-

ing/test images, 8 classes) and (ii) the larger SIFT-Flow [80] dataset (2488/200 train-

ing/test images, densely labeled with 33 object classes).

In evaluating sense parsing algorithms there are two metrics that are commonly used:

per-pixel classification rate and per-class classification rate. If the class distribution were

uniform then the two would be the same, but this is not the case for real-world scenes.

A problem with optimizing pixel error alone is that rare classes are ignored since they

occupy only a few percent of image pixels. Consequently, the mean class error is a

more useful metric for applications that require performance on all classes, not just the

common ones. Our algorithm is able to smoothly trade off between the two performance

measures by varying the smoothing parameter t at evaluation time. Using a 2D plot for

the pair of metrics, the curve produced by varying t gives the full performance picture

for our algorithm.

Our baseline is the system described in Section 2, but with no image flips, no learned

weights (i.e. they are uniform) and no added segments. It is essentially the same as

the Tighe and Lazebnik [128], but with a slightly different smoothing of the NN counts.

Our method relies on the same set of 19 super-pixel descriptors used by [128]. As other

authors do, we compare the performance without an additional CRF layer so that any

differences in local classification performance can be seen clearly. Our algorithm uses

the following parameters for all experiments (unless otherwise stated): v = 200, k = 10,

r = 200.

3.4.1 Stanford Background Dataset

Fig. 3.3 shows the performance curve of our algorithm on the Stanford Background

dataset, along with the baseline system. Also shown is the result from Gould et al. [41],

but since they do not measure per-class performance, we show an estimated range on

25

the x-axis. While we convincingly beat the baseline and do better than Gould et al. 3,

our best per-pixel performance of 75.3% fall short of the current state-of-the-art on the

dataset, 78.1% by Socher et al. [121]. The small size of the training set is problematic

for our algorithm, since it relies on good density estimates from the NN lookup. Indeed,

the limited size of the dataset means that the global match set is most of the dataset

(i.e. |G| is close to |T |), so the global context stage is not effective. Furthermore, since

there are only 8 classes, adding segments using contextual cues gave no performance gain

either. We therefore focus on the SIFT-Flow dataset which is larger and better suited

to our algorithm.

0.63 0.64 0.65 0.66 0.67 0.68 0.69
0.7

0.71

0.72

0.73

0.74

0.75

0.76

Mean % Pixels Correct Per Class

M
ea

n
%

 P
ix

el
s

C
or

re
ct

Baseline
Trained Weights
Gould ICCV 2009

Figure 3.3: Evaluation of our algorithm on the Stanford background dataset, using
local labeling only. x-axis is mean per-class classification rate, y-axis is mean per-pixel
classification rate. Better performance corresponds to the top right corner. Black = Our
version of [128]; Red = Our algorithm (without added segments step); Blue = Gould
et al. [41] (estimated range).

3.4.2 SIFT-Flow Dataset

The results of our algorithm on the SIFT-Flow dataset are shown in Fig. 3.4, where

we compare to other approaches using local labeling only. Both the trained weights and

adding segments procedures give a significant jump in performance. The latter procedure

3Assuming some a per-class performance consistent with their per-pixel performance.

26

only gives a per-class improvement, consistent with its goal of helping the rare classes

(see Fig. 3.8 for the class distribution).

To the best of our knowledge, Tighe and Lazebnik [128] is the current state-of-the-art

method on this dataset (Fig. 3.4, black square). For local labeling, our overall system

outperforms their approach by 10.1% (29.1% vs 39.2%) in per-class accuracy, for the

same per-pixel performance, a 35% relative improvement. The gain in per-pixel accuracy

is 3.6% (73.2% vs 76.8%).

Adding an MRF to our approach (Fig. 3.4, cyan curve) gives 77.1% per-pixel and 32.5%

per-class accuracy, outperforming the best published result of Tighe and Lazebnik [128]

(76.9% per-pixel and 29.4% per-class). Note that their result uses geometric features not

used by our approach. Adding an MRF to our implementation of their system gives a

small improvement over the baseline which is significantly outperformed by our approach

+ an MRF.

0.25 0.3 0.35 0.4 0.45
0.55

0.6

0.65

0.7

0.75

0.8

Mean % Pixels Correct Per Class

M
ea

n
%

 P
ix

el
s

C
or

re
ct

Baseline
 + Flipped Images
 + Trained Weights
 + Added Segments
 + MRF
Baseline+MRF
Tighe et al.
Liu et al.

Figure 3.4: Evaluation of our algorithm on the SIFT-Flow dataset. Better performance is
in the top right corner. Our implementation of [128] (black + curve) closely matches their
published result (black square). Adding flipped versions of the images to the training
set improves the baseline a small amount (blue). A more significant gain is seen when
after training the NN weights (green). Refining our classification after adding segments
(red) gives a further gain in per-class performance. Adding an MRF (cyan) also gives
further gain. Also shown is Liu et al. [80] (magenta). Not shown is Shotton et al. [114]:
0.13 class, 0.52 pixel.

27

Sample images classified by our algorithm are shown in Fig. 5.4. We also demonstrate

the significance of our results by re-running our methods on a different train/test split

of the SIFT-Flow dataset. The results obtained are very similar to the original split and

are shown in Fig. 3.5.

0.25 0.3 0.35 0.4 0.45
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Mean % Pixels Correct Per Class

M
ea

n
%

 P
ix

el
s

C
or

re
ct

Baseline
 + Flipped Images
 + Trained Weights
 + Added Segments

Figure 3.5: Results for a different train/test split of the SIFT-Flow dataset to one
standard one used in Fig. 3.4. Similar results are obtained on both test sets.

In Fig. 3.6, we explore the role of the global context selection by varying the number

of image-level matches, controlled by the v parameter which dictates |G|. For small

values performance is poor. Intermediate v gives improved performance under both

metrics. But if v is too large, G contains many unrelated descriptors and the per-class

performance is decreased. This demonstrates the value of the global context selection

procedure, since without it G = T , and the per-class performance would be poor.

In Fig. 3.7 we visualize the descriptor weights, showing how they vary across class and

descriptor type (by averaging them over all instances of each class, since they differ for

each segment). Note how the weights jointly vary across both class and descriptor. For

example, the min height descriptor usually has high weight, except for some spatially

diffuse classes (e.g. desert,field) where its weight is low.

Fig. 3.8 shows the expected class distribution of super-pixels in G for the SIFT-Flow

dataset before and after the adding segments procedure, demonstrating its efficacy. The

28

0.25 0.3 0.35 0.4
0.55

0.6

0.65

0.7

0.75

10

20

50

100

200
5001000

Mean % Pixels Correct Per Class

M
ea

n
%

 P
ix

el
s

C
or

re
ct

Baseline
images in
 global match set

Figure 3.6: The global context selection procedure. Changing the parameter v (value at
each magenta dot) affects both types of error. See text for details. For comparison, the
baseline approach using a fixed v = 200 (and varying the smoothing t) is shown.

bu
ild

in
g

m
ou

nt
ai

n
tre

e
sk

y
ro

ad se
a

ca
r

fie
ld

w
in

do
w

pl
an

t
riv

er
gr

as
s

ro
ck

si
de

w
al

k
sa

nd
do

or
de

se
rt

br
id

ge
pe

rs
on

ba
lc

on
y

fe
nc

e
st

ai
rc

as
e

si
gn

aw
ni

ng
cr

os
sw

al
k

bo
at

st
re

et
lig

ht
bu

s
po

le
su

n
co

w
bi

rd
m

oo
n

 desc_quant_grow_sift_sp_100_16
desc_quant_int_sift_sp_100_16

desc_quant_grow_mr8
desc_quant_int_mr8

mask_thumb_32
bbox_size

area
min_height

mask_abs_thumb_8
color_mean

color_std
color_hist

color_hist_grow
color_thumb

color_thumb_mask
desc_quant_bdy_sift100_left

desc_quant_bdy_sift100_right
desc_quant_bdy_sift100_top
desc_quant_bdy_sift100_bot

bu
ild

in
g

m
ou

nt
ai

n
tre

e
sk

y
ro

ad se
a

ca
r

fie
ld

w
in

do
w

pl
an

t
riv

er
gr

as
s

ro
ck

si
de

w
al

k
sa

nd
do

or
de

se
rt

br
id

ge
pe

rs
on

ba
lc

on
y

fe
nc

e
st

ai
rc

as
e

si
gn

aw
ni

ng
cr

os
sw

al
k

bo
at

st
re

et
lig

ht
bu

s
po

le
su

n
co

w
bi

rd
m

oo
n

 desc_quant_grow_sift_sp_100_16
desc_quant_int_sift_sp_100_16

desc_quant_grow_mr8
desc_quant_int_mr8

mask_thumb_32
bbox_size

area
min_height

mask_abs_thumb_8
color_mean

color_std
color_hist

color_hist_grow
color_thumb

color_thumb_mask
desc_quant_bdy_sift100_left

desc_quant_bdy_sift100_right
desc_quant_bdy_sift100_top
desc_quant_bdy_sift100_bot

Figure 3.7: A visualization of the mean weight for different classes by descriptor type.
Red/Blue corresponds to high/low weights. See text for details.

increase in rare segments is important in improving per-class accuracy (see Fig. 3.4).

Learned Weights Full

Global Descriptors 2.8 2.8
Segment Descriptors 3.0 3.0

GlobalMatch 0.9 0.9
Classify 3.5 3.5

ContextMatches - 0.4
Classify - 6.1

Total 10.3 16.6

Table 3.1: Timing breakdown (seconds) for the evaluation of a single query image using
the full system and our system without adding segments (just global context match +
learning weights). Note the descriptor computation makes up around half of the time.

In Table 3.1, we list the timings for each stage of our algorithm running on the SIFT-

29

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

bu
ild

in
g

m
ou

nt
ai

n
tr

ee sk
y

se
a

ro
ad

!e
ld

ca
r

w
in

do
w

pl
an

t
riv

er
gr

as
s

ro
ck

sid
ew

al
k

sa
nd

do
or

br
id

ge
ba

lc
on

y
fe

nc
e

pe
rs

on
st

ai
rc

as
e

sig
n

aw
ni

ng
cr

os
sw

al
k

su
n

st
re

et
lig

ht
bo

at
bi

rd
po

le
bu

s
co

w
de

se
rt

m
oo

n

no context indexing
with context indexing

Figure 3.8: Expected number of super-pixels in G with the same true class c∗s of a query
segment, ordered by frequency (blue). Note the power-law distribution of frequencies,
with many classes having fewer than 50 counts. Following the Adding Segments proce-
dure, counts of rare classes are significantly boosted while those for common classes are
unaltered (red). Queries were performed using the SIFT-Flow dataset.

Flow dataset, implemented in Matlab. Note that a substantial fraction of the time is

just taken up with descriptor computations. The search parts of our algorithm run in

a comparable time to other non-parametric approaches [128], being considerably faster

than methods that use per-exemplar distance measures (e.g. Frome et al. [32] which

takes 300s per image).

3.5 Discussion

In this chapter we have described two mechanisms for enhancing the performance of

non-parametric scene parsing based on kNN methods. Both share the underlying idea

of customizing the dataset for each kNN query. Rather than assuming that the full

training set is optimally discriminative, adapting the dataset allows for better use of

imperfectly generated descriptors with limited power. Learning weights focuses the clas-

sifier on more discriminative features and removes outlier points. Likewise, context-based

adaptation uses information beyond local descriptors to remove distractor super-pixels

whose appearances are indistinguishable from those of relevant classes. Reintroducing

rare class examples improves density lost in the initial global pruning. On sufficiently

30

p:0.926
c:0.635

p:0.652
c:0.331

p:0.649
c:0.329

p:0.513
c:0.486

p:0.625
c:0.542

p:0.678
c:0.572

p:0.522
c:0.282

p:0.567
c:0.306

p:0.858
c:0.375

p:0.783
c:0.590

p:0.967
c:0.908

p:0.891
c:0.656

p:0.378
c:0.316

p:0.620
c:0.449

p:0.575
c:0.549

p:0.844
c:0.550

p:0.897
c:0.789

p:0.880
c:0.745

!"#$%&'("$)*' +,-"%,&'.,/0*)1' 2$33'451),6'7-1,3/%,'

8-9'

8:9'

8;9'

8<9'

809'

8*9'

!"#$%&'("$)*' +,-"%,&'.,/0*)1' 2$33'451),6'7-1,3/%,'=%>$)'=%>$)'

p:0.440
c:0.203

p:0.793
c:0.329

p:0.791
c:0.328

p:0.881
c:0.665

p:0.881
c:0.665

p:0.874
c:0.660

p:0.625
c:0.459

p:0.827
c:0.483

p:0.629
c:0.363

p:0.016
c:0.009

p:0.438
c:0.262

p:0.446
c:0.264

8&9'

8,9'

8/9'

8?9'

awning balcony bird boat bridge building car

crosswalk fence field grass mountain person plant

pole river road rock sand sea sidewalk

sign sky staircase streetlight sun tree window

awning balcony bird boat bridge building car

crosswalk fence field grass mountain person plant

pole river road rock sand sea sidewalk

sign sky staircase streetlight sun tree window

awning balcony bird boat bridge building car

crosswalk fence field grass mountain person plant

pole river road rock sand sea sidewalk

sign sky staircase streetlight sun tree window

awning balcony bird boat bridge building car

crosswalk fence field grass mountain person plant

pole river road rock sand sea sidewalk

sign sky staircase streetlight sun tree window

Figure 3.9: Example images from the SIFT-Flow dataset, annotated with classification
rates using per-pixel (“p”) and per-class (“c”) metrics. Learning weights improves overall
performance. Adding rare class examples improves classification of less common classes,
like the boat in (b) and sidewalk in (g). Failures include labeling the road as sand in (h)
and the mountain as rock (a rarer class) in (c).

large datasets, both contributions give a significant performance gain.

While this kNN system can learn weights for each feature descriptor indicating its relative

importance, it does not yet learn the features themselves, nor the steps that combine

them into a classification prediction. We now begin to investigate a system that has

these capabilities: By their use of trainable weights in multiple layers of computation,

convolutional networks take the principle of model customization much further, learning

entire stacks of features automatically tuned for the task and the data.

31

Chapter 4

Restoring An Image Taken

Through a Window Covered with

Dirt or Rain

The work presented in this chapter appeared in ICCV 2013 [24], and was a collaboration

with Dilip Krishnan and Rob Fergus.

Figure 4.1: A photograph taken through a glass pane covered in dirt (left) and rain
(right), along with the output of our neural network model trained to remove this type
of corruption.

32

4.1 Introduction

In the previous chapter, we described a system for predicting per-pixel semantic labels

using superpixels and hand-designed features. We now begin to apply convolutional

networks to infer per-pixel outputs. As we will see in Chapter 6, the ability of these net-

works to learn multiple layers of weighted combinations will allow them to leverage large

datasets and achieve greatly better performance on the same task, using a combination

of global and local fields of view. First, however, we investigate an effective application

of convolutional networks using purely local fields of view: restoring images that contain

compact structured noise in the form of dirt or rain droplets. In this chapter we also

find a benefit to training convolutionally, i.e. evaluating the loss on the final predicted

image obtained after averaging individual patch predictions, and examine the effects of

this.

Photographs taken through a window are often compromised by dirt or rain present on

the window surface. Common cases of this include when a person is inside a car, train or

building and wishes to photograph the scene outside, or exhibits in museums displayed

behind protective glass. Such scenarios have become increasingly common with the

widespread use of smartphone cameras. Beyond consumer photography, many cameras

are mounted outside, e.g. on buildings for surveillance or on vehicles to prevent collisions.

These cameras are protected from the elements by an enclosure with a transparent

window.

Such images are affected by many factors including reflections and attenuation. However,

in this paper we address the particular situation where the window is covered with dirt

or water drops, resulting from rain. As shown in Fig. 4.1, these artifacts significantly

degrade the quality of the captured image.

The classic approach to removing occluders from an image is to defocus them to the

point of invisibility at the time of capture. This requires placing the camera right up

against the glass and using a large aperture to produce small depth-of-field. However,

33

in practice it can be hard to move the camera sufficiently close, and aperture control

may not be available on smartphone cameras or webcams. Correspondingly, many shots

with smartphone cameras through dirty or rainy glass still have significant artifacts, as

shown in Fig. 4.9.

In this paper we instead restore the image post-capture, treating the dirt or rain as a

structured form of image noise. Our method only relies on the artifacts being spatially

compact, thus is aided by the rain/dirt being in focus — hence the shots need not be

taken close to the window.

Our approach is to use a convolutional neural network to predict clean patches, given

dirty or clean ones as input. By asking the network to produce a clean output, regardless

of the corruption level of the input, it implicitly must both detect the corruption and, if

present, in-paint over it. Integrating both tasks simplifies and speeds test-time operation,

since separate detection and in-painting stages are avoided.

Training the models requires a large set of patch pairs to adequately cover the space

inputs and corruption, the gathering of which was non-trivial and required the devel-

opment of new techniques. However, although training is somewhat complex, test-time

operation is simple: a new image is presented to the neural network and it directly

outputs a restored image.

4.1.1 Related Work

Image denoising is a very well studied problem, with current approaches such as BM3D

[17] approaching theoretical performance limits [79]. However, the vast majority of

this literature is concerned with additive white Gaussian noise, quite different to the

image artifacts resulting from dirt or water drops. Our problem is closer to shot-noise

removal, but differs in that the artifacts are not constrained to single pixels and have

characteristic structure. Classic approaches such as median or bilateral filtering have

no way of leveraging this structure, thus cannot effectively remove the artifacts (see

34

Section 5.4).

Learning-based methods have found widespread use in image denoising, e.g. [152, 93,

99, 153]. These approaches remove additive white Gaussian noise (AWGN) by building

a generative model of clean image patches. In this paper, however, we focus on more

complex structured corruption, and address it using a neural network that directly maps

corrupt images to clean ones; this obviates the slow inference procedures used by most

generative models.

Neural networks have previously been explored for denoising natural images, mostly in

the context of AWGN, e.g. Jain and Seung [65], and Zhang and Salari [150]. Algorith-

mically, the closest work to ours is that of Burger et al. [9], which applies a large neural

network to a range of non-AWGN denoising tasks, such as salt-and-pepper noise and

JPEG quantization artifacts. Although more challenging than AWGN, the corruption

is still significantly easier than the highly variable dirt and rain drops that we address.

Furthermore, our network has important architectural differences that are crucial for

obtaining good performance on these tasks.

Removing localized corruption can be considered a form of blind inpainting, where the

position of the corrupted regions is not given (unlike traditional inpainting [27]). Dong

et al. [21] show how salt-and-pepper noise can be removed, but the approach does not

extend to multi-pixel corruption. Recently, Xie et al. [143] showed how a neural network

can perform blind inpainting, demonstrating the removal of text synthetically placed

in an image. This work is close to ours, but the solid-color text has quite different

statistics to natural images, thus is easier to remove than rain or dirt which vary greatly

in appearance and can resemble legitimate image structures. Jancsary et al. [66] denoise

images with a Gaussian conditional random field, constructed using decision trees on

local regions of the input; however, they too consider only synthetic corruptions.

Several papers explore the removal of rain from images. Garg and Nayar [34] and Bar-

num et al. [4] address airborne rain. The former uses defocus, while the latter uses

35

frequency-domain filtering. Both require video sequences rather than a single image,

however. Roser and Geiger [104] detect raindrops in single images; although they do

not demonstrate removal, their approach could be paired with a standard inpainting

algorithm. As discussed above, our approach combines detection and inpainting.

Closely related to our application is Gu et al. [47], who show how lens dust and nearby

occluders can be removed, but their method requires extensive calibration or a video

sequence, as opposed to a single frame. Wilson et al. [142] and Zhou and Lin [151]

demonstrate dirt and dust removal. The former removes defocused dust for a Mars

Rover camera, while the latter removes sensor dust using multiple images and a physics

model.

4.2 Approach

To restore an image from a corrupt input, we predict a clean output using a specialized

form of convolutional neural network [77]. The same network architecture is used for all

forms of corruption; however, a different network is trained for dirt and for rain. This

allows the network to tailor its detection capabilities for each task.

4.2.1 Network Architecture

Given a noisy image x, our goal is to predict a clean image y that is close to the true clean

image y∗. We accomplish this using a multilayer convolutional network, y = F (x). The

network F is composed of a series of layers Fl, each of which applies a linear convolution to

its input, followed by an element-wise sigmoid (implemented using hyperbolic tangent).

36

Concretely, if the number of layers in the network is L, then

F0(x) = x

Fl(x) = tanh(Wl ∗ Fl−1(x) + bl), l = 1, ..., L− 1

F (x) =
1

m
(WL ∗ FL−1(x) + bL)

Here, x is the RGB input image, of size N × M × 3. If nl is the output dimension at

layer l, then Wl applies nl convolutions with kernels of size pl × pl × nl−1, where pl is

the spatial support. bl is a vector of size nl containing the output bias (the same bias is

used at each spatial location).

While the first and last layer kernels have a nontrivial spatial component, we restrict

the middle layers (2 ≤ l ≤ L − 1) to use pl = 1, i.e. they apply a linear map at each

spatial location. We also element-wise divide the final output by the overlap mask1 m

to account for different amounts of kernel overlap near the image boundary. The first

layer uses a “valid” convolution, while the last layer uses a “full” (these are the same for

the middle layers since their kernels have 1× 1 support).

In our system, the input kernels’ support is p1 = 16, and the output support is pL = 8.

We use two hidden layers (i.e. L = 3), each with 512 units. As stated earlier, the middle

layer kernel has support p2 = 1. Thus, W1 applies 512 kernels of size 16 × 16 × 3, W2

applies 512 kernels of size 1 × 1 × 512, and W3 applies 3 kernels of size 8 × 8 × 512.

Fig. 4.2 shows examples of weights learned for the rain data.

1 m = 1K ∗ 1I , where 1K is a kernel of size pL × pL filled with ones, and 1I is a 2D array of ones with
as many pixels as the last layer input.

37

4.2.2 Training

We train the weights Wl and biases bl by minimizing the mean squared error over a

dataset D = (xi, y∗i) of corresponding noisy and clean image pairs. The loss is

J(θ) =
1

2|D|
�

i∈D
||F (xi)− y∗i ||2

where θ = (W1, ...,WL, b1, ..., bL) are the model parameters. The pairs in the dataset D

are random 64×64 pixel subregions of training images with and without corruption (see

Fig. 4.4 for samples). Because the input and output kernel sizes of our network differ,

the network F produces a 56 × 56 pixel prediction yi, which is compared against the

middle 56× 56 pixels of the true clean subimage y∗i .

We minimize the loss using Stochastic Gradient Descent (SGD). The update for a single

step at time t is

θt+1 ← θt − ηt(F (xi)− y∗i)
T ∂

∂θ
F (xi)

where ηt is the learning rate hyper-parameter and i is a randomly drawn index from the

training set. The gradient is further backpropagated through the network F .

We initialize the weights at all layers by randomly drawing from a normal distribution

with mean 0 and standard deviation 0.001. The biases are initialized to 0. The learning

rate is 0.001 with decay, so that ηt = 0.001/(1 + 5t · 10−7). We use no momentum or

weight regularization.

4.2.3 Effect of Convolutional Architecture

A key improvement of our method over [9] is that we minimize the error of the final

image prediction, whereas [9] minimizes the error only of individual patches. We found

this difference to be crucial to obtain good performance on the corruption we address.

Since the middle layer convolution in our network has 1× 1 spatial support, the network

38

Figure 4.2: A subset of rain model network weights, sorted by l2-norm. Left: first
layer filters which act as detectors for the rain drops. Right: top layer filters used to
reconstruct the clean patch.

can be viewed as first patchifying the input, applying a fully-connected neural network

to each patch, and averaging the resulting output patches. More explicitly, we can split

the input image x into stride-1 overlapping patches {xp} = patchify(x), and predict

a corresponding clean patch yp = f(xp) for each xp using a fully-connected multilayer

network f . We then form the predicted image y = depatchify({yp}) by taking the

average of the patch predictions at pixels where they overlap. In this context, the

convolutional network F can be expressed in terms of the patch-level network f as

F (x) = depatchify({f(xp) : xp ∈ patchify(x)}).

In contrast to [9], our method trains the full network F , including patchification and

depatchification. This drives a decorrelation of the individual predictions, which helps

both to remove occluders as well as reduce blur in the final output. To see this, consider

two adjacent patches y1 and y2 with overlap regions yo1 and yo2, and desired output

y∗o . If we were to train according to the individual predictions, the loss would minimize

(yo1−y∗o)
2+(yo2−y∗o)

2, the sum of their error. However, if we minimize the error of their

average, the loss becomes
�yo1+yo2

2 − y∗o
�2

= 1
4 [(yo1−y∗o)

2+(yo2−y∗o)
2+2(yo1−y∗o)(yo2−

y∗o)]. The new mixed term pushes the individual patch errors in opposing directions,

encouraging them to decorrelate.

Fig. 4.3 depicts this for a real example. When trained at the patch level, as in the system

described by [9], each prediction leaves the same residual trace of the noise, which their

39

(a) (b) (c)

Figure 4.3: Denoising near a piece of noise. (a) shows a 64 × 64 image region with
dirt occluders (top), and target ground truth clean image (bottom). (b) and (c) show
the results obtained using non-convolutional and convolutionally trained networks, re-
spectively. The top row shows the full output after averaging. The bottom row shows
the signed error of each individual patch prediction for all 8 × 8 patches obtained us-
ing a sliding window in the boxed area, displayed as a montage. The errors from the
convolutionally-trained network (c) are less correlated with one another compared to
(b), and cancel to produce a better average.

average then maintains (b). When trained with our convolutional network, however, the

predictions decorrelate where not perfect, and average to a better output (c).

4.2.4 Test-Time Evaluation

By restricting the middle layer kernels to have 1×1 spatial support, our method requires

no synchronization until the final summation in the last layer convolution. This makes

our method natural to parallelize, and it can easily be run in sections on large input

images by adding the outputs from each section into a single image output buffer. Our

Matlab GPU implementation is able to restore a 3888× 2592 color image in 60s using a

nVidia GTX 580, and a 1280× 720 color image in 7s.

40

4.3 Training Data Collection

The network has 753,664 weights and 1,216 biases which need to be set during training.

This requires a large number of training patches to avoid over-fitting. We now describe

the procedures used to gather the corrupted/clean patch pairs2 used to train each of the

dirt and rain models.

4.3.1 Dirt

To train our network to remove dirt noise, we generated clean/noisy image pairs by

synthesizing dirt on images. Similarly to [47], we also found that dirt noise was well-

modeled by an opacity mask and additive component, which we extract from real dirt-on-

glass panes in a lab setup. Once we have the masks, we generate noisy images according

to

I � = pαD + (1− α)I

Here, I and I � are the original clean and generated noisy image, respectively. α is a

transparency mask the same size as the image, and D is the additive component of the

dirt, also the same size as the image. p is a random perturbation vector in RGB space,

and the factors pαD are multiplied together element-wise. p is drawn from a uniform

distribution over (0.9, 1.1) for each of red, green and blue, then multiplied by another

random number between 0 and 1 to vary brightness. These random perturbations are

necessary to capture natural variation in the corruption and make the network robust

to these changes.

To find α and αD, we took pictures of several slide-projected backgrounds, both with

and without a dirt-on-glass pane placed in front of the camera. We then solved a linear

least-squares system for α and αD at each pixel; further details are included in the

supplementary material.

2The corrupt patches still have many unaffected pixels, thus even without clean/clean patch pairs in
the training set, the network will still learn to preserve clean input regions.

41

Figure 4.4: Examples of clean (top row) and corrupted (bottom row) patches used for
training. The dirt (left column) was added synthetically, while the rain (right column)
was obtained from real image pairs.

4.3.2 Water Droplets

Unlike the dirt, water droplets refract light around them and are not well described

by a simple additive model. We considered using the more sophisticated rendering

model of [46], but accurately simulating outdoor illumination made this inviable. Thus,

instead of synthesizing the effects of water, we built a training set by taking photographs

of multiple scenes with and without the corruption present. For corrupt images, we

simulated the effect of rain on a window by spraying water on a pane of anti-reflective

MgF2-coated glass, taking care to produce drops that closely resemble real rain. To

limit motion differences between clean and rainy shots, all scenes contained only static

objects. Further details are provided in the supplementary material.

4.4 Baseline Methods

We compare our convolutional network against a nonconvolutional patch-level network

similar to [9], as well as three baseline approaches: median filtering, bilateral filtering

[130, 97], and BM3D [17]. In each case, we tuned the algorithm parameters to yield the

42

Original Our Output

Original Ours Nonconv Median

Figure 4.5: Example image containing dirt, and the restoration produced by our network.
Note the detail preserved in high-frequency areas like the branches. The nonconvolutional
network leaves behind much of the noise, while the median filter causes substantial
blurring.

best qualitative performance in terms of visibly reducing noise while keeping clean parts

of the image intact. On the dirt images, we used an 8× 8 window for the median filter,

parameters σs = 3 and σr = 0.3 for the bilateral filter, and σ = 0.15 for BM3D. For the

rain images, we used similar parameters, but adjusted for the fact that the images were

downsampled by half: 5 × 5 for the median filter, σs = 2 and σr = 0.3 for the bilateral

filter, and σ = 0.15 for BM3D.

4.5 Experiments

4.5.1 Dirt

We tested dirt removal by running our network on pictures of various scenes taken behind

dirt-on-glass panes. Both the scenes and glass panes were not present in the training

set, ensuring that the network did not simply memorize and match exact patterns. We

43

tested restoration of both real and synthetic corruption. Although the training set was

composed entirely of synthetic dirt, it was representative enough for the network to

perform well in both cases.

The network was trained using 5.8 million examples of 64 × 64 image patches with

synthetic dirt, paired with ground truth clean patches. We trained only on examples

where the variance of the clean 64× 64 patch was at least 0.001, and also required that

at least 1 pixel in the patch had a dirt α-mask value of at least 0.03. To compare to [9],

we trained a non-convolutional patch-based network with patch sizes corresponding to

our convolution kernel sizes, using 20 million 16× 16 patches.

Synthetic Dirt Results

We first measure quantitative performance using synthetic dirt. The results are shown

in Table 4.1. Here, we generated test examples using images and dirt masks held out

from the training set, using the process described in Section 4.3.1. Our convolutional

network substantially outperforms its patch-based counterpart. Both neural networks

are much better than the three baselines, which do not make use of the structure in the

corruption that the networks learn.

We also applied our network to two types of artificial noise absent from the training set:

synthetic “snow” made from small white line segments, and “scratches” of random cubic

splines. An example region is shown in Fig. 4.6. In contrast to the gain of +6.50 dB

for dirt, the network leaves these corruptions largely intact, producing near-zero PSNR

gains of -0.10 and +0.30 dB, respectively, over the same set of images. This demonstrates

that the network learns to remove dirt specifically.

Dirt Results

Fig. 4.5 shows a real test image along with our output and the output of the patch-based

network and median filter. Because of illumination changes and movement in the scenes,

44

PSNR Input Ours Nonconv Median Bilateral BM3D

Mean 28.93 35.43 34.52 31.47 29.97 29.99
Std.Dev. 0.93 1.24 1.04 1.45 1.18 0.96

Gain - 6.50 5.59 2.53 1.04 1.06

Table 4.1: PSNR for our convolutional neural network, nonconvolutional patch-based
network, and baselines on a synthetically generated test set of 16 images (8 scenes with
2 different dirt masks). Our approach significantly outperforms the other methods.

(a) (b) (c) (d)

Figure 4.6: Our dirt-removal network applied to an image with (a) no corruption, (b)
synthetic dirt, (c) artificial “snow” and (d) random “scratches.” Because the network
was trained to remove dirt, it successfully restores (b) while leaving the corruptions in
(c,d) largely untouched. Top: Original images. Bottom: Output.

we were not able to capture ground truth images for quantitative evaluation. Our method

is able to remove most of the corruption while retaining details in the image, particularly

around the branches and shutters. The non-convolutional network leaves many pieces of

dirt behind, while the median filter loses much detail present in the original. Note also

that the neural networks leave already-clean parts of the image mostly untouched.

Two common causes of failure of our model are large corruption, and very oddly-shaped

or unusually colored corruption. Our 16 × 16 input kernel support limits the size of

corruption recognizable by the system, leading to the former. The latter is caused by a

lack of generalization: although we trained the network to be robust to shape and color

by supplying it a range of variations, it will not recognize cases too far from those seen in

training. Another interesting failure of our method appears in the bright orange cones in

Fig. 4.5, which our method reduces in intensity — this is due to the fact that the training

dataset did not contain any examples of such fluorescent objects. More examples are

45

provided in the supplementary material.

4.5.2 Rain

We ran the rain removal network on two sets of test data: (i) pictures of scenes taken

through a pane of glass on which we sprayed water to simulate rain, and (ii) pictures

of scenes taken while it was actually raining, from behind an initially clean glass pane.

Both sets were composed of real-world outdoor scenes not in the training set.

We trained the network using 6.5 million examples of 64×64 image patch pairs, captured

as described in Section 4.3.2. Similarly to the dirt case, we used a variance threshold

of 0.001 on the clean images and required each training pair to have at least 1 pixel

difference over 0.1.

Water Droplets Results

Examples of our network removing sprayed-on water is shown in Fig. 4.7. As was the

case for the dirt images, we were not able to capture accurate ground truth due to

illumination changes and subject motion. Since we also do not have synthetic water

examples, we analyze our method in this mode only qualitatively.

As before, our network is able to remove most of the water droplets, while preserving

finer details and edges reasonably well. The non-convolutional network leaves behind

additional droplets, e.g. by the subject’s face in the top image; it performs somewhat

better in the bottom image, but blurs the subject’s hand. The median filter must blur

the image substantially before visibly reducing the corruption. However, the neural

networks mistake the boltheads on the bench for raindrops, and remove them.

Despite the fact that our network was trained on static scenes to limit object motion

between clean/noisy pairs, it still preserves animate parts of the images well: The face

and body of the subject are reproduced with few visible artifacts, as are grass, leaves

46

Original Our Output

Original Ours Nonconv Median

Original Our Output

Original Ours Nonconv Median

Figure 4.7: Our network removes most of the water while retaining image details; the
non-convolutional network leaves more droplets behind, particularly in the top image,
and blurs the subject’s fingers in the bottom image. The median filter blurs many details,
but still cannot remove much of the noise.

47

Figure 4.8: Shot from the rain video sequence (see supplementary video), along with the
output of our network. Note each frame is processed independently, without using any
temporal information or background subtraction.

and branches (which move from wind). Thus the network can be applied to many scenes

substantially different from those seen in training.

Real Rain Results

A picture taken using actual rain is shown in Fig. 4.8. We include more pictures of this

time series as well as a video in the supplementary material. Each frame of the video was

presented to our algorithm independently; no temporal filtering was used. To capture

the sequence, we set a clean glass pane on a tripod and allowed rain to fall onto it, taking

pictures at 20s intervals. The camera was placed 0.5m behind the glass, and was focused

on the scene behind.

Even though our network was trained using sprayed-on water, it was still able to remove

much of the actual rain. The largest failures appear towards the end of the sequence,

when the rain on the glass is very heavy and starts to agglomerate, forming droplets larger

than our network can handle. Although this is a limitation of the current approach, we

hope to address such cases in future work.

Lastly, in addition to pictures captured with a DSLR, in Fig. 4.9 we apply our network

to a picture taken using a smartphone on a train. While the scene and reflections are

preserved, raindrops on the window are removed, though a few small artifacts do remain.

48

This demonstrates that our model is able to restore images taken by a variety of camera

types.

Figure 4.9: Top: Smartphone shot through a rainy window on a train. Bottom: Output
of our algorithm.

4.6 Discussion

In this chapter we introduced a method for removing rain or dirt artifacts from a single

image. Although the problem appears underconstrained, the artifacts have a distinctive

appearance which we are able to learn with a specialized convolutional network and

a carefully constructed training set. Results on real test examples show most artifacts

being removed without undue loss of detail, unlike previous approaches such as median or

bilateral filtering. Using a convolutional network accounts for the error in the final image

prediction, providing a significant performance gain over the corresponding patch-based

network.

49

The quality of the results does however depend on the statistics of test cases being

similar to those of the training set. In cases where this does not hold, we see significant

artifacts in the output. This can be alleviated by expanding the diversity and size of

the training set. A second issue is that the corruption cannot be much larger than the

training patches. This means the input image may need to be downsampled, e.g. as in

the rain application, leading to a loss of resolution relative to the original.

Although we have only considered day-time outdoor shots, the approach could be ex-

tended to other settings such as indoor or night-time, given suitable training data. It

could also be extended to other problem domains such as scratch removal or color shift

correction. Our algorithm also provides the underlying technology for a number of po-

tential applications such as a digital car windshield to aid driving in adverse weather

conditions, or enhancement of footage from security or automotive cameras in exposed

locations.

While a local field of view is sufficient to detect and remove compact noise structures,

a more global view is needed for many other tasks in order to incorporate context and

cues from the larger image area. We now turn to a more challenging task that requires

both scales, predicting depth from a single image.

50

Chapter 5

Depth Map Prediction from a

Single Image using a

Multi-Scale Deep Network

The work presented in this chapter appeared in NIPS 2014 [25], and was a collaboration

with Christian Puhrsch and Rob Fergus.

5.1 Introduction

Predicting depth is an essential component in understanding the 3D geometry of a scene.

In this chapter we develop a convolutional network that integrates both global and local

views of an input image together to generate a depth map; this map contains the depth

from the camera for each pixel of the input. While for stereo images local correspondence

suffices for estimation, finding depth relations from a single image is less straightforward,

and requires integrating information from both global and local scales.

Depth relations help provide richer representations of objects and their environment

compared to using RGB exclusively; including them often leads to improvements in

51

existing recognition tasks [115], and can enable many further applications such as 3D

modeling [108, 62], physics and support models [115], robotics [50, 88], and potentially

reasoning about occlusions.

While there is much prior work on estimating depth based on stereo images or motion

[110], there has been relatively little on estimating depth from a single image. Yet

the monocular case often arises in practice: Potential applications include better under-

standings of the many images distributed on the web and social media outlets, real estate

listings, and shopping sites. These include many examples of both indoor and outdoor

scenes.

There are likely several reasons why the monocular case has not yet been tackled to

the same degree as the stereo one. Provided accurate image correspondences, depth

can be recovered deterministically in the stereo case [53]. Thus, stereo depth estimation

can be reduced to developing robust image point correspondences — which can often

be found using local appearance features. By contrast, estimating depth from a single

image requires the use of monocular depth cues such as line angles and perspective,

object sizes, image position, and atmospheric effects. Furthermore, a global view of the

scene may be needed to relate these effectively, whereas local disparity is sufficient for

stereo.

Moreover, the task is inherently ambiguous, and a technically ill-posed problem: Given

an image, an infinite number of possible world scenes may have produced it. Of course,

most of these are physically implausible for real-world spaces, and thus the depth may

still be predicted with considerable accuracy. At least one major ambiguity remains,

though: the global scale. Although extreme cases (such as a normal room versus a

dollhouse) do not exist in the data, moderate variations in room and furniture sizes

are present. We address this using a scale-invariant error in addition to more common

scale-dependent errors. This focuses attention on the spatial relations within a scene

rather than general scale, and is particularly apt for applications such as 3D modeling,

where the model is often rescaled during postprocessing.

52

In this chapter we present a new approach for estimating depth from a single image. We

directly regress on the depth using a neural network with two components: one that first

estimates the global structure of the scene, then a second that refines it using local infor-

mation. The network is trained using a loss that explicitly accounts for depth relations

between pixel locations, in addition to pointwise error. Our system achieves state-of-the

art estimation rates on NYU Depth and KITTI, as well as improved qualitative outputs.

5.2 Related Work

Directly related to our work are several approaches that estimate depth from a single

image. Saxena et al. [107] predict depth from a set of image features using linear re-

gression and a MRF, and later extend their work into the Make3D [108] system for 3D

model generation. However, the system relies on horizontal alignment of images, and

suffers in less controlled settings. Hoiem et al. [62] do not predict depth explicitly, but

instead categorize image regions into geometric structures (ground, sky, vertical), which

they use to compose a simple 3D model of the scene.

More recently, Ladicky et al. [74] show how to integrate semantic object labels with

monocular depth features to improve performance; however, they rely on handcrafted

features and use superpixels to segment the image. Karsch et al. [68] use a kNN transfer

mechanism based on SIFT Flow [81] to estimate depths of static backgrounds from

single images, which they augment with motion information to better estimate moving

foreground subjects in videos. This can achieve better alignment, but requires the entire

dataset to be available at runtime and performs expensive alignment procedures. By

contrast, our method learns an easier-to-store set of network parameters, and can be

applied to images in real-time.

More broadly, stereo depth estimation has been extensively investigated. Scharstein

et al. [110] provide a survey and evaluation of many methods for 2-frame stereo cor-

respondence, organized by matching, aggregation and optimization techniques. In a

53

creative application of multiview stereo, Snavely et al. [118] match across views of many

uncalibrated consumer photographs of the same scene to create accurate 3D reconstruc-

tions of common landmarks.

Machine learning techniques have also been applied in the stereo case, often obtaining

better results while relaxing the need for careful camera alignment [70, 87, 144, 117].

Most relevant to this work is Konda et al. [70], who train a factored autoencoder on

image patches to predict depth from stereo sequences; however, this relies on the local

displacements provided by stereo.

There are also several hardware-based solutions for single-image depth estimation. Levin

et al. [78] perform depth from defocus using a modified camera aperture, while the

Kinect and Kinect v2 use active stereo and time-of-flight to capture depth. Our method

makes indirect use of such sensors to provide ground truth depth targets during training;

however, at test time our system is purely software-based, predicting depth from RGB

images.

5.3 Approach

5.3.1 Model Architecture

Our network is made of two component stacks, shown in Fig. 5.1. A coarse-scale network

first predicts the depth of the scene at a global level. This is then refined within local

regions by a fine-scale network. Both stacks are applied to the original input, but in

addition, the coarse network’s output is passed to the fine network as additional first-

layer image features. In this way, the local network can edit the global prediction to

incorporate finer-scale details.

54

9x9 conv
 2 stride
2x2 pool

11x11 conv
 4 stride
 2x2 pool

Fine 1

Coarse 1

5x5 conv
2x2 pool

Coarse 2

96

64

Coarse 5

256 256

Coarse 6

4096

63

Concatenate

384

Coarse 4

Fine 3

Coarse

Fine 4

Refined

3x3 conv full3x3 conv 3x3 conv

5x5 conv

full

1

164

Fine 2

5x5 conv

Input

384

Coarse 3 Coarse 7

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

9x9 conv
 2 stride
2x2 pool

11x11 conv
 4 stride
 2x2 pool

Fine 1

Coarse 1

5x5 conv
2x2 pool

Coarse 2

96

64

Coarse 5

256 256

Coarse 6

4096

63

Concatenate

384

Coarse 4

Fine 3

Coarse

Fine 4

Refined

3x3 conv full3x3 conv 3x3 conv

5x5 conv

full

1

164

Fine 2

5x5 conv

Input

384

Coarse 3 Coarse 7

Coarse Fine
Layer input 1 2,3,4 5 6 7 1,2,3,4
Size (NYUDepth) 304x228 37x27 18x13 8x6 1x1 74x55 74x55
Size (KITTI) 576x172 71x20 35x9 17x4 1x1 142x27 142x27
Ratio to input /1 /8 /16 /32 – /4 /4

Figure 1: Model architecture.

predict depth explicitly, but instead categorize image regions into geometric structures (ground, sky,
vertical), which they use to compose a simple 3D model of the scene.

More recently, Ladicky et al. [?] show how to integrate semantic object labels with monocular depth
features to improve performance; however, they rely on handcrafted features and use superpixels to
segment the image. Karsch et al. [?] use a kNN transfer mechanism based on SIFT Flow [?] to esti-
mate depths of static backgrounds from single images, which they augment with motion information
to better estimate moving foreground subjects in videos. This can achieve better alignment, but re-
quires the entire dataset to be available at runtime and performs expensive alignment procedures.
By contrast, our method learns an easier-to-store set of network parameters, and can be applied to
images in real-time.

More broadly, stereo depth estimation has been extensively investigated. Scharstein et al. [?] provide
a survey and evaluation of many methods for 2-frame stereo correspondence methods, organized by
matching, aggregation and optimization techniques. In a creative application of multiview stereo,
Snavely et al. [?] match across views of many uncalibrated consumer photographs of the same scene
to create accurate 3D reconstructions of common landmarks.

Machine learning techniques have been applied in the stereo case, often obtaining better results
while relaxing the need for careful camera alignment [?, ?, ?, ?]. Most relevant to this work is
Konda et al. [?], who train a factored autoencoder on image patches to predict depth from stereo
sequences; however, this relies on the local displacements provided by stereo.

There are also several hardware-based solutions for single-image depth estimation. Levin et al. [?]
perform depth from defocus using a modified camera aperature, while the Kinect and Kinect v2 use
active stereo and time-of-flight to capture depth. Our method makes indirect use of such sensors
to provide ground truth depth targets during training; however, at test time our system is purely
software-based, predicting depth from RGB images only.

2

Figure 5.1: Model architecture.

Global Coarse-Scale Network

The task of the coarse-scale network is to predict the overall depth map structure using

a global view of the scene. The upper layers of this network are fully connected, and thus

contain the entire image in their field of view. Similarly, the lower and middle layers are

designed to combine information from different parts of the image through max-pooling

operations to a small spatial dimension. In so doing, the network is able to integrate a

global understanding of the full scene to predict the depth. Such an understanding is

needed in the single-image case to make effective use of cues such as vanishing points,

object locations, and room alignment. A local view (as is commonly used for stereo

matching) is insufficient to notice important features such as these.

As illustrated in Fig. 5.1, the global, coarse-scale network contains five feature extraction

layers of convolution and max-pooling, followed by two fully connected layers. The input,

feature map and output sizes are also given in Fig. 5.1. The final output is at 1/4-

resolution compared to the input (which is itself downsampled from the original dataset

by a factor of 2), and corresponds to a center crop containing most of the input (as we

55

describe later, we lose a small border area due to the first layer of the fine-scale network

and image transformations).

Note that the spatial dimension of the output is larger than that of the topmost con-

volutional feature map. Rather than limiting the output to the feature map size and

relying on hardcoded upsampling before passing the prediction to the fine network, we

allow the top full layer to learn templates over the larger area (74x55 for NYU Depth).

These are expected to be blurry, but will be better than the upsampled output of a 8x6

prediction (the top feature map size); essentially, we allow the network to learn its own

upsampling based on the features. Sample output weights are shown in Fig. 5.2

All hidden layers use rectified linear units for activations, with the exception of the

coarse output layer 7, which is linear. Dropout is applied to the fully-connected hidden

layer 6. The convolutional layers (1-5) of the coarse-scale network are pretrained on the

ImageNet classification task [19] — while developing the model, we found pretraining

on ImageNet worked better than initializing randomly, although the difference was not

very large1.

(a) (b)

Figure 5.2: Weight vectors from layer Coarse 7 (coarse output), for (a) KITTI and (b)
NYUDepth. Red is positive (farther) and blue is negative (closer); black is zero. Weights
are selected uniformly and shown in descending order by l2 norm. KITTI weights often
show changes in depth on either side of the road. NYUDepth weights often show wall
positions and doorways.

1When pretraining, we stack two fully connected layers with 4096 - 4096 - 1000 output units each,
with dropout applied to the two hidden layers, as in [73]. We train the network using random 224x224
crops from the center 256x256 region of each training image, rescaled so the shortest side has length 256.
This model achieves a top-5 error rate of 18.1% on the ILSVRC2012 validation set, voting with 2 flips
and 5 translations per image.

56

Local Fine-Scale Network

After taking a global perspective to predict the coarse depth map, we make local re-

finements using a second, fine-scale network. The task of this component is to edit the

coarse prediction it receives to align with local details such as object and wall edges.

The fine-scale network stack consists of convolutional layers only, along with one pooling

stage for the first layer edge features.

While the coarse network sees the entire scene, the field of view of an output unit in the

fine network is 45x45 pixels of input. The convolutional layers are applied across feature

maps at the target output size, allowing a relatively high-resolution output at 1/4 the

input scale.

More concretely, the coarse output is fed in as an additional low-level feature map. By

design, the coarse prediction is the same spatial size as the output of the first fine-

scale layer (after pooling), and we concatenate the two together (Fine 2 in Fig. 5.1).

Subsequent layers maintain this size using zero-padded convolutions.

All hidden units use rectified linear activations. The last convolutional layer is linear, as

it predicts the target depth. We train the coarse network first against the ground-truth

targets, then train the fine-scale network keeping the coarse-scale output fixed (i.e. when

training the fine network, we do not backpropagate through the coarse one).

5.3.2 Scale-Invariant Error

The global scale of a scene is a fundamental ambiguity in depth prediction. Indeed,

much of the error accrued using current elementwise metrics may be explained simply

by how well the mean depth is predicted. For example, Make3D trained on NYUDepth

obtains 0.41 error using RMSE in log space (see Table 5.1). However, using an oracle to

substitute the mean log depth of each prediction with the mean from the corresponding

ground truth reduces the error to 0.33, a 20% relative improvement. Likewise, for our

57

system, these error rates are 0.28 and 0.22, respectively. Thus, just finding the average

scale of the scene accounts for a large fraction of the total error.

Motivated by this, we use a scale-invariant error to measure the relationships between

points in the scene, irrespective of the absolute global scale. For a predicted depth map

y and ground truth y∗, each with n pixels indexed by i, we define the scale-invariant

mean squared error (in log space) as

D(y, y∗) =
1

n

n�

i=1

(log yi − log y∗i + α(y, y∗))2, (5.1)

where α(y, y∗) = 1
n

�
i(log y

∗
i − log yi) is the value of α that minimizes the error for a

given (y, y∗). For any prediction y, eα is the scale that best aligns it to the ground truth.

All scalar multiples of y have the same error, hence the scale invariance.

Two additional ways to view this metric are provided by the following equivalent forms.

Setting di = log yi − log y∗i to be the difference between the prediction and ground truth

at pixel i, we have

D(y, y∗) =
1

n2

�

i,j

�
(log yi − log yj)− (log y∗i − log y∗j)

�2
(5.2)

=
1

n

�

i

d2i −
1

n2

�

i,j

didj =
1

n

�

i

d2i −
1

n2

�
�

i

di

�2

(5.3)

Eqn. 5.2 expresses the error by comparing relationships between pairs of pixels i, j in

the output: to have low error, each pair of pixels in the prediction must differ in depth

by an amount similar to that of the corresponding pair in the ground truth. Eqn. 5.3

relates the metric to the original l2 error, but with an additional term, − 1
n2

�
ij didj ,

that credits mistakes if they are in the same direction and penalizes them if they oppose.

58

Thus, an imperfect prediction will have lower error when its mistakes are consistent with

one another. The last part of Eqn. 5.3 rewrites this as a linear-time computation.

In addition to the scale-invariant error, we also measure the performance of our method

according to several error metrics have been proposed in prior works, as described in

Section 5.4.

5.3.3 Training Loss

In addition to performance evaluation, we also tried using the scale-invariant error as a

training loss. Inspired by Eqn. 5.3, we set the per-sample training loss to

L(y, y∗) =
1

n

�

i

d2i −
λ

n2

�
�

i

di

�2

(5.4)

where di = log yi − log y∗i and λ ∈ [0, 1]. Note the output of the network is log y; that is,

the final linear layer predicts the log depth. Setting λ = 0 reduces to elementwise l2, while

λ = 1 is the scale-invariant error exactly. We use the average of these, i.e. λ = 0.5, finding

that this produces good absolute-scale predictions while slightly improving qualitative

output.

During training, most of the target depth maps will have some missing values, particu-

larly near object boundaries, windows and specular surfaces. We deal with these simply

by masking them out and evaluating the loss only on valid points, i.e. we replace n in

Eqn. 5.4 with the number of pixels that have a target depth, and perform the sums

excluding pixels i that have no depth value.

5.3.4 Data Augmentation

We augment the training data with random online transformations (values shown for

NYUDepth; for KITTI, s ∈ [1, 1.2], and rotations are not performed since images are

horizontal from the camera mount):

59

• Scale: Input and target images are scaled by s ∈ [1, 1.5], and the depths are divided

by s.

• Rotation: Input and target are rotated by r ∈ [−5, 5] degrees.

• Translation: Input and target are randomly cropped to the sizes indicated in

Fig. 5.1.

• Color : Input values are multiplied globally by a random RGB value c ∈ [0.8, 1.2]3.

• Flips: Input and target are horizontally flipped with 0.5 probability.

Note that image scaling and translation do not preserve the world-space geometry of

the scene. This is easily corrected in the case of scaling by dividing the depth values

by the scale s (making the image s times larger effectively moves the camera s times

closer). Although translations are not easily fixed (they effectively change the camera

to be incompatible with the depth values), we found that the extra data they provided

benefited the network even though the scenes they represent were slightly warped. The

other transforms, flips and in-plane rotation, are geometry-preserving. At test time, we

use a single center crop at scale 1.0 with no rotation or color transforms.

5.4 Experiments

We train our model on the raw versions both NYU Depth v2 [115] and KITTI [36]. The

raw distributions contain many additional images collected from the same scenes as in

the more commonly used small distributions, but with no preprocessing; in particular,

points for which there is no depth value are left unfilled. However, our model’s natural

ability to handle such gaps as well as its demand for large training sets make these fitting

sources of data.

5.4.1 NYU Depth

The NYU Depth dataset [115] is composed of 464 indoor scenes, taken as video sequences

using a Microsoft Kinect camera. We use the official train/test split, using 249 scenes

60

for training and 215 for testing, and construct our training set using the raw data for

these scenes. RGB inputs are downsampled by half, from 640x480 to 320x240. Because

the depth and RGB cameras operate at different variable frame rates, we associate each

depth image with its closest RGB image in time, and throw away frames where one

RGB image is associated with more than one depth (such a one-to-many mapping is not

predictable). We use the camera projections provided with the dataset to align RGB

and depth pairs; pixels with no depth value are left missing and are masked out. To

remove many invalid regions caused by windows, open doorways and specular surfaces

we also mask out depths equal to the minimum or maximum recorded for each image.

The training set has 120K unique images, which we shuffle into a list of 220K after

evening the scene distribution (1200 per scene). We test on the 694-image NYU Depth

v2 test set (with filled-in depth values). We train coarse network for 2M samples using

SGD with batches of size 32. We then hold it fixed and train the fine network for 1.5M

samples (given outputs from the already-trained coarse one). Learning rates are: 0.001

for coarse convolutional layers 1-5, 0.1 for coarse full layers 6 and 7, 0.001 for fine layers 1

and 3, and 0.01 for fine layer 2. These ratios were found by trial-and-error on a validation

set (folded back into the training set for our final evaluations), and the global scale of

all the rates was tuned to a factor of 5. Momentum was 0.9.

5.4.2 KITTI

The KITTI dataset [36] is composed of several outdoor scenes captured while driving with

car-mounted cameras and depth sensor. We use 56 scenes from the “city,” “residential,”

and “road” categories of the raw data. These are split into 28 for training and 28 for

testing. The RGB images are originally 1224x368, and downsampled by half to form the

network inputs.

The depth for this dataset is sampled at irregularly spaced points, captured at different

times using a rotating LIDAR scanner. When constructing the ground truth depths for

61

training, there may be conflicting values; since the RGB cameras shoot when the scanner

points forward, we resolve conflicts at each pixel by choosing the depth recorded closest

to the RGB capture time. Depth is only provided within the bottom part of the RGB

image, however we feed the entire image into our model to provide additional context to

the global coarse-scale network (the fine network sees the bottom crop corresponding to

the target area).

The training set has 800 images per scene. We exclude shots where the car is stationary

(acceleration below a threshold) to avoid duplicates. Both left and right RGB cameras

are used, but are treated as unassociated shots. The training set has 20K unique im-

ages, which we shuffle into a list of 40K (including duplicates) after evening the scene

distribution. We train the coarse model first for 1.5M samples, then the fine model for

1M. Learning rates are the same as for NYU Depth.

5.4.3 Baselines and Comparisons

We compare our method against Make3D trained on the same datasets, as well as the

published results of other current methods [74, 68]. As an additional reference, we

also compare to the mean depth image computed across the training set. We trained

Make3D on KITTI using a subset of 700 images (25 per scene), as the system was unable

to scale beyond this size. Depth targets were filled in using the colorization routine in the

NYUDepth development kit. For NYUDepth, we used the common distribution training

set of 795 images. We evaluate each method using several errors from prior works, as

well as our scale-invariant metric:

• Threshold: % of yi s.t. max(yiy∗i
,
y∗i
yi
) = δ < thr

• Abs Relative difference: 1
|T |

�
y∈T |y − y∗|/y∗

• Squared Relative difference: 1
|T |

�
y∈T ||y − y∗||2/y∗

• RMSE (linear):
�

1
|T |

�
y∈T ||yi − y∗i ||2

62

• RMSE (log):
�

1
|T |

�
y∈T || log yi − log y∗i ||2

• RMSE (log, scale-invariant): The error Eqn. 5.1

Note that the predictions from Make3D and our network correspond to slightly differ-

ent center crops of the input. We compare them on the intersection of their regions,

and upsample predictions to the full original input resolution using nearest-neighbor.

Upsampling negligibly affects performance compared to downsampling the ground truth

and evaluating at the output resolution. 2

5.5 Results

5.5.1 NYU Depth

Results for NYU Depth dataset are provided in Table 5.1. As explained in Section 5.4.3,

we compare against the data mean and Make3D as baselines, as well as Karsch et al. [68]

and Ladicky et al. [74]. (Ladicky et al. uses a joint model which is trained using both

depth and semantic labels). Our system achieves the best performance on all metrics,

obtaining an average 35% relative gain compared to the runner-up. Note that our system

is trained using the raw dataset, which contains many more example instances than the

data used by other approaches, and is able to effectively leverage it to learn relevant

features and their associations.

This dataset breaks many assumptions made by Make3D, particularly horizontal align-

ment of the ground plane; as a result, Make3D has relatively poor performance in this

task. Importantly, our method improves over it on both scale-dependent and scale-

invariant metrics, showing that our system is able to predict better relations as well as

better means.
2On NYUDepth, log RMSE is 0.285 vs 0.286 for upsampling and downsampling, respectively, and

scale-invariant RMSE is 0.219 vs 0.221. The intersection is 86% of the network region and 100% of
Make3D for NYUDepth, and 100% of the network and 82% of Make3D for KITTI.

63

Qualitative results are shown on the left side of Fig. 5.4, sorted top-to-bottom by scale-

invariant MSE. Although the fine-scale network does not improve in the error measure-

ments, its effect is clearly visible in the depth maps — surface boundaries have sharper

transitions, aligning to local details. However, some texture edges are sometimes also

included. Fig. 5.3 compares Make3D as well as outputs from our network trained with

losses using λ = 0 and λ = 0.5. While we did not observe numeric gains using λ = 0.5

over λ = 0, it did produce slight qualitative improvements in the more detailed outputs.

Mean Make3D Ladicky&al Karsch&al Coarse Coarse+Fine

threshold δ < 1.25 0.418 0.447 0.542 – 0.618 0.611 higher

threshold δ < 1.252 0.711 0.745 0.829 – 0.891 0.887 is

threshold δ < 1.253 0.874 0.897 0.940 – 0.969 0.971 better

abs relative diff. 0.408 0.349 – 0.350 0.228 0.215
sqr relative diff. 0.581 0.492 – – 0.223 0.212 lower

RMSE (linear) 1.244 1.214 – 1.2 0.871 0.907 is

RMSE (log) 0.430 0.409 – – 0.283 0.285 better

RMSE (log,sc.inv.) 0.304 0.325 – – 0.221 0.219

Table 5.1: Comparison on the NYUDepth dataset

input m3d coarse L2 L2 scale-­inv ground truth

input

m3d

coarse

L2

sc.-­inv

g.truth

Figure 5.3: Qualitative comparison of Make3D, our method trained with l2 loss (λ = 0),
and our method trained with both l2 and scale-invariant loss (λ = 0.5).

5.5.2 KITTI

We next examine results on the KITTI driving dataset. Here, the Make3D baseline is

well-suited to the dataset, being composed of horizontally aligned images, and achieves

relatively good results. Still, our method improves over it on all metrics, by an average

31% relative gain. Just as importantly, there is a 25% gain in both the scale-dependent

and scale-invariant RMSE errors, showing there is substantial improvement in the pre-

dicted structure. Again, the fine-scale network does not improve much over the coarse

one in the error metrics, but differences between the two can be seen in the qualitative

outputs.

64

Mean Make3D Coarse Coarse + Fine

threshold δ < 1.25 0.556 0.601 0.679 0.692 higher
threshold δ < 1.252 0.752 0.820 0.897 0.899 is
threshold δ < 1.253 0.870 0.926 0.967 0.967 better
abs relative difference 0.412 0.280 0.194 0.190
sqr relative difference 5.712 3.012 1.531 1.515 lower
RMSE (linear) 9.635 8.734 7.216 7.156 is
RMSE (log) 0.444 0.361 0.273 0.270 better
RMSE (log, scale inv.) 0.359 0.327 0.248 0.246

Table 5.2: Comparison on the KITTI dataset.

The right side of Fig. 5.4 shows examples of predictions, again sorted by error. The

fine-scale network produces sharper transitions here as well, particularly near the road

edge. However, the changes are somewhat limited. This is likely caused by uncorrected

alignment issues between the depth map and input in the training data, due to the rotat-

ing scanner setup. This dissociates edges from their true position, causing the network

to average over their more random placements. Fig. 5.3 shows Make3D performing much

better on this data, as expected, while using the scale-invariant error as a loss seems to

have little effect in this case.

5.6 Discussion

Predicting depth estimates from a single image is a challenging task. Yet by combining

information from both global and local views, it can be performed reasonably well. Our

system accomplishes this through the use of two deep networks, one that estimates the

global depth structure, and another that refines it locally at finer resolution. We achieve

a new state-of-the-art on this task for NYU Depth and KITTI datasets, having effectively

leveraged the full raw data distributions.

In the next chapter, we extend our method to also predict surface normals and seman-

tic labels, thus providing even richer geometric outputs and object class information.

We also apply successively finer-scaled networks to increase the output map resolution,

providing sharper alignments and more detailed detections.

65

!"# !$# !%# !&#

!"#

!$#

!%#

!&#

Figure 5.4: Example predictions from our algorithm. NYUDepth on left, KITTI on right.
For each image, we show (a) input, (b) output of coarse network, (c) refined output of
fine network, (d) ground truth. Examples are sorted from best (top) to worst (bottom).

66

Chapter 6

Predicting Depth,

Surface Normals and

Semantic Labels

with a Common Multi-Scale

Convolutional Architecture

The work presented in this chapter was a collaboration with Rob Fergus, and is currently

available on arXiv [23].

6.1 Introduction

In this chapter, we develop a multiscale convolutional network to address three differ-

ent computer vision tasks: depth prediction, surface normal estimation, and semantic

labeling. Our new model builds upon the approach we took in the previous chapter on

depth map prediction, and contains enhancements that both enable generalization to

67

new tasks, as well as help performance. All three tasks use the same core architecture,

which requires only minor task-specific modifications to perform each effectively.

Our new method generates pixel-maps directly from an input image, without the need

for low-level superpixels or contours, and is able to align to many image details by using

a series of convolutional network stacks applied at increasing resolution. At test time,

all three outputs can be generated in real time (∼30Hz). We achieve state-of-the art

results on all three tasks we investigate, demonstrating the versatility of our approach.

There are several advantages in developing a general model for pixel-map regression.

First, applications to new tasks may be quickly developed, with much of the new work

lying in defining an appropriate training set and loss function; in this light, our work

is a step towards building off-the-shelf regressor models that can be used for many

applications. In addition, use of a single architecture helps simplify the implementation

of systems that require multiple modalities, e.g. robotics or augmented reality, which

in turn can help enable research progress in these areas. Lastly, in the case of depth

and normals in our system, much of the computation can be shared between modalities,

making the system more efficient.

6.2 Related Work

Single-image surface normal estimation has been addressed by Fouhey et al. [30, 31],

Ladicky et al. [75], and most recently by Wang et al. [140], the latter in work concurrent

with ours. Fouhey et al. match to discriminative local templates [30] followed by a global

optimization on a grid drawn from vanishing point rays [31], while Ladicky et al. learn

a regression from over-segmented regions to a discrete set of normals and mixture co-

efficients. Wang et al. [140] use convolutional networks to combine normals estimates

from local and global scales, while also employing cues from room layout, edge labels

and vanishing points. Importantly, we achieve as good or superior results with a more

general multiscale architecture that can naturally be used to perform many different

tasks.

68

Prior work on semantic segmentation includes many different approaches, both using

RGB-only data [129, 11, 28] as well as RGB-D [115, 101, 89, 16, 51, 56, 48]. Most of these

use local features to classify over-segmented regions, followed by a global consistency

optimization such as a CRF. By comparison, our method takes an essentially inverted

approach: We make a consistent global prediction first, then follow it with iterative local

refinements. In so doing, the local networks are made aware of their place within the

global scene, and can can use this information in their refined predictions.

Gupta et al. [48, 49] create semantic segmentations first by generating contours, then

classifying regions using either hand-generated features and SVM [48], or a convolutional

network for object detection [49]. Notably, [48] also performs amodal completion, which

transfers labels between disparate regions of the image by comparing planes from the

depth.

Most related to our method in semantic segmentation are other approaches using con-

volutional networks. Farabet et al. [28] and Couprie et al. [16] each use a convolutional

network applied at multiple scales to find local predictions, then aggregate the predic-

tions using superpixels. Our method differs in several important ways. First, our model

has a large, full-image field of view at the coarsest scale; as we demonstrate, this is of

critical importance, particularly for depth and normals tasks. Second, we do not use su-

perpixels or any post-process smoothing — instead, our network produces fairly smooth

outputs on its own, allowing us to take a simple pixel-wise maximum. Moreover, our

model can naturally be applied both to piecewise-constant targets (e.g. labels) as well

as spatially-varying outputs (e.g. depth/normals).

Pinheiro et al. [98] use a recurrent convolutional network in which each application

predicts labels at the center location of an input region, given predicted labels from

the previous scale and a rescaled input patch. In contrast to our model, the scales

progress from local to global, incorporating progressively more context — precisely the

reverse of our approach. In addition, they apply the same network parameters at all

scales, while we learn distinct networks that can specialize in the edits appropriate to

69

their stage, and communicate between the first two scales with more flexible feature

maps rather than constraining to the classes; these choices are also consistent with our

findings in Chapter 7, in which we find that not tying weights between layers generally

helps performance. However, a drawback of this is that our model is constrained to

operate on fixed-size images, whereas [98] can in theory be repeatedly applied to cover

arbitrarily large images.

In concurrent work, Long et al. [83] adapt the recent VGG ImageNet model [116] to

semantic segmentation by applying 1x1 convolutional label classifiers at feature maps

from different layers, corresponding to different scales, and averaging the outputs. By

contrast, we apply networks for different scales in series, which allows them to make

more complex edits and refinements, starting from a full image field of view. Thus our

architecture easily adapts to many tasks, whereas by using fields of view always centered

on the output and summing predictions, theirs is specific to semantic labeling.

Some recent works have applied related architectures to object segmentation. Wang

et al. [141] perform salient object segmentation using a single-scale ConvNet applied

jointly with bounding box detection, but segment only one object per image and are

limited to 50x50 single-channel bitmaps. Huang and Jain [63] segment neurons by recur-

sively applying an affinity graph generator, but apply their model exclusively to neuron

segmentation, use a VQ/SVM pipeline, and make different use of scale. By contrast, we

apply a series of convolutional networks at successive scales, applied to a several different

tasks in describing photographic scenes.

6.3 Model Architecture

Building upon the we model introduced in Chapter 5, we employ a multi-scale deep

network that first predicts a coarse global output based on the entire image area, then

refines it using finer-scale local networks. This scheme is illustrated in Fig. 6.1. Our new

model has several architectural improvements: First, we make the model deeper (more

70

convolutional layers). Second, we add a third scale at higher resolution, bringing the

final output resolution up to half the input, or 109× 147 for NYUDepth. Third, instead

of passing output predictions from scale 1 to scale 2, we pass multichannel feature maps ;

in so doing, we found we could also train the first two scales of the network jointly from

the start, somewhat simplifying the training procedure and yielding performance gains.

Scale 1: Full-Image View The first scale in the network predicts a coarse but

spatially-varying set of features for the entire image area, based on a large, full-image

field of view. We accomplish this through the use of two fully-connected layers — the

output of the last full layer is reshaped to 1/16-scale in its spatial dimensions by 64

features, then upsampled by a factor of 4 to 1/4-scale. Note since the feature upsam-

pling is linear, this corresponds to a decomposition of a big fully connected layer from

layer 1.6 to the larger 74× 55 map; since such a matrix would be prohibitively large and

only capable of producing a blurry output given the more constrained input features,

we constrain the resolution and upsample. Note, however, that the 1/16-scale output is

still large enough to capture considerable spatial variation, and in fact is twice as large

as the 1/32-scale final convolutional features of the coarse stack.

Since the top layers are fully connected, each spatial location in the output connects

to the all the image features, incorporating a very large field of view. This stands in

contrast to the multiscale approach of [16, 28], who apply convolutions and pooling alone

to downsampled versions of the image, producing maps whose output locations’ fields

of view are always centered on the output pixel. This full-view connection is especially

important for depth and normals tasks, as we investigate in Section 6.7.1.

As shown in Fig. 6.1, we trained two different sizes of our model: One where this scale

is based on an ImageNet-trained AlexNet [73], and one where it is initialized using the

Oxford VGG network [116]. We report differences in performance between the models

on all tasks, to measure the impact of model size in each.

Scale 2: Predictions The job of the second scale is to produce predictions at a

71

upsample

Input

Normals

conv/pool

conv/pool

!!!"
convolutions

!!!"
convolutions

full conn.
!!!"

conv/pool

Scale 1

Scale 2

Scale 3

concat

concat

upsample

Depth Labels

Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1
Size 37x27 18x13 18x13 18x13 8x6 1x1 19x14 74x55

(AlexNet)
#convs 1 1 1 1 1 – – –
#chan 96 256 384 384 256 4096 64 64
ker. sz 11x11 5x5 3x3 3x3 3x3 – – –
Ratio /8 /16 /16 /16 /32 – /16 /4
l.rate 0.001 0.001 0.001 0.001 0.001 see text
Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1
Size 150x112 75x56 37x28 18x14 9x7 1x1 19x14 74x55

(VGG)
#convs 2 2 3 3 3 – – –
#chan 64 128 256 512 512 4096 64 64
ker. sz 3x3 3x3 3x3 3x3 3x3 – – –
Ratio /2 /4 /8 /16 /32 – /16 /4
l.rate 0.001 0.001 0.001 0.001 0.001 see text

Scale 2

Layer 2.1 2.2 2.3 2.4 2.5 upsamp
Size 74x55 74x55 74x55 74x55 74x55 147x109
#chan 96+64 64 64 64 C C
ker. sz 9x9 5x5 5x5 5x5 5x5 –
Ratio /4 /4 /4 /4 /4 /2
l.rate 0.001 0.01 0.01 0.01 0.001

Scale 3

Layer 3.1 3.2 3.3 3.4 final
Size 147x109 147x109 147x109 147x109 147x109
#chan 96+C 64 64 C C
ker. sz 9x9 5x5 5x5 5x5 –
Ratio /2 /2 /2 /2 /2
l.rate 0.001 0.01 0.01 0.001

Figure 6.1: Model architecture. C is the number of output channels in the final predic-
tion, which depends on the task. The input to the network is 320x240.

72

mid-level resolution, by incorporating a more detailed but narrower view of the image

along with the full-image information supplied by the coarse network. We accomplish

this by concatenating the feature maps of the coarse network with those from a single

layer of convolution and pooling, performed at finer stride (see Fig. 6.1). The output of

the second scale is a 74 × 55 prediction (for NYUDepth), with the number of channels

depending on the task. We train Scales 1 and 2 of the model together jointly, using SGD

on the losses described in Section 6.4.

Scale 3: Higher Resolution The final scale of our model refines the predictions

to higher resolution. We concatenate the Scale-2 outputs with feature maps generated

from the original input at yet finer stride, thus incorporating a more detailed view. The

further refinement aligns the output to higher-resolution details in the image, producing

spatially coherent yet quite detailed outputs. The final output resolution is half the

network input.

6.4 Tasks

We apply this same architecture structure to each of the three tasks we investigate:

depths, normals and semantic labeling. Each makes use of a different loss function and

target data defining the task.

6.4.1 Depth

For depth prediction, we use a loss function comparing the predicted and ground-truth

log depth maps D and D∗. Letting d = D −D∗ be their difference, we set the loss to

Ldepth(D,D∗) =
1

n

�

i

d2i −
1

2n2

�
�

i

di

�2

+
1

n

�

i

[(∇xdi)
2 + (∇ydi)

2] (6.1)

73

where the sums are over valid1 pixels i, and n is the number of valid pixels. Here, ∇xdi

and ∇ydi are the horizontal and vertical image gradients of the difference.

This loss combines the l2 and scale-invariant terms we used in Chapter 5 with a first-order

matching term (∇xdi)2+(∇ydi)2, which compares image gradients of the prediction with

the ground truth. This encourages predictions to have not only close-by values, but also

similar local structure. We found it indeed produces outputs that better follow depth

gradients, with no degradation in measured l2 performance.

6.4.2 Surface Normals

To predict surface normals, we change the output from one channel to three, and predict

the x, y and z components of the normal at each pixel. We also normalize the vector

at each pixel to unit l2 norm, and backpropagate through this normalization. We then

employ a simple elementwise loss comparing the predicted normal at each pixel to the

ground truth, using a dot product:

Lnormals(N,N∗) = − 1

n

�

i

Ni ·N∗
i = − 1

n
N ·N∗ (6.2)

where N and N∗ are predicted and ground truth normal vector maps, and the sums

again run over valid pixels (i.e. those with a ground truth normal).

For ground truth targets, we compute the normal map using the same method as in

Silberman et al. [115], which estimates normals from depth by fitting least-squares planes

to neighboring sets of points in the point cloud.

6.4.3 Semantic Labels

For semantic labeling, we use a pixelwise softmax classifier to predict a class label for

each pixel. The final output then has as many channels as there are classes. We use a

1We mask out pixels where the ground truth is missing.

74

simple pixelwise cross-entropy loss,

Lsemantic(C,C
∗) = − 1

n

�

i

C∗
i log(Ci) (6.3)

where Ci = ezi/
�

c e
zi,c is the class prediction at pixel i given the output z of the final

convolutional linear layer 3.4.

When labeling the NYUDepth RGB-D dataset, we use the ground truth depth and

normals as additional input channels. We convolve each of the three input types (RGB,

depth and normals) with a different set of 32×9×9 filters, then concatenate the resulting

three feature sets along with the network output from the previous scale to form the input

to the next. 2 Note the first scale is initialized using ImageNet, and we keep it RGB-

only. Applying convolutions to each input type separately, rather than concatenating all

the channels together in pixel space and filtering the joint input, enforces independence

between the features at the lowest filter level, which we found helped performance.

6.5 Training

6.5.1 Training Procedure

We train our model in two phases using SGD: First, we jointly train both Scales 1 and

2. Second, we fix the parameters of these scales and train Scale 3. Since Scale 3 contains

four times as many pixels as Scale 2, it is expensive to train using the entire image area

for each gradient step. To speed up training, we instead use random crops of size 74x55:

We first forward-propagate the entire image through scales 1 and 2, upsample, and crop

the resulting Scale 3 input, as well as the original RGB input at the corresponding

location. The cropped image and Scale 2 prediction are forward- and back-propagated

through the Scale 3 network, and the weights updated. We find this speeds up training

2We also tried the “HHA” encoding proposed by [49], but did not see a benefit in our case, thus we
opt for the simpler approach of using the depth and xyz-normals directly.

75

by about a factor of 3, including the overhead for inference of the first two scales, and

results in about the same if not slightly better error from the increased stochasticity.

All three tasks use the same initialization and learning rates in nearly all layers, indi-

cating that hyperparameter settings are in fact fairly robust to changes in task. These

values were first tuned using the depth task, then verified to be an appropriate order

of magnitude for each other task using a small validation set. The only differences are:

(i) The learning rate for the normals task is 10 times larger than depth or labels. (ii)

Relative learning rates of layers 1.6 and 1.7 are 0.1 each for depth/normals, but 1.0 and

0.01 for semantic labeling. (iii) The dropout rate of layer 1.6 is 0.5 for depth/normals,

but 0.8 for semantic labels, as there are fewer training images.

We initialize the convolutional layers in Scale 1 using ImageNet-trained weights, and

randomly initialize the fully connected layers of Scale 1 and all layers in Scales 2 and 3.

We train using batches of size 32 for the AlexNet-initialized model but batches of size

16 for the VGG-initialized model due to memory constraints. In each case we step down

the global learning rate by a factor of 10 after approximately 2M gradient steps, and

train for an additional 0.5M steps.

6.5.2 Data Augmentation

In all cases, we apply random data transforms to augment the training data. We use

random scaling, in-plane rotation, translation, color, flips and contrast. When trans-

forming an input and target, we apply corresponding transformations to RGB, depth,

normals and labels. Note the normal vector transformation is the inverse-transpose of

the worldspace transform: Flips and in-plane rotations require flipping or rotating the

normals, while to scale the image by a factor s, we divide the depths by s but multiply

the z coordinate of the normals and renormalize.

76

6.5.3 Combining Depth and Normals

We combine both depths and normals networks together to share computation, creating

a network using a single scale 1 stack, but separate scale 2 and 3 stacks. Thus we predict

both depth and normals at the same time, given an RGB image. This produces a 1.6x

speedup compared to using two separate models.

This shared model also enabled us to try enforcing compatibility between predicted nor-

mals and those obtained via finite difference of the predicted depth (predicting normals

directly performs considerably better than using finite difference). However, while this

constraint was able to improve the normals from finite difference, it failed to improve

either task individually. Thus, while we make use of the shared model for computational

efficiency, we do not use the extra compatibility constraint.

6.6 Performance Experiments

6.6.1 Depth

We first apply our method to depth prediction on NYUDepth v2. We train using the

entire NYUDepth v2 raw data distribution, using the scene split specified in the official

train/test distribution. We then test on the common distribution depth maps, including

filled-in areas, but constrained to the axis-aligned rectangle where there there is a valid

depth map projection. Since the network output is a lower resolution than the original

NYUDepth images, and excludes a small border, we bilinearly upsample our network

outputs to the original 640x480 image scale, and extrapolate the missing border using a

cross-bilateral filter. We compare our method to prior works Ladicky et al. [74], Karsh

et al. [68], Baig et al. [2], Liu et al. [82], and our previous system from Chapter 5 (Eigen

et al. [25]).

Results are shown in Table 6.1. Our model obtains best performance in every metric, due

to our larger architecture. Qualitative results in Fig. 6.2 show considerable improvement

in detail sharpness over the results from Chapter 5.

77

1

(a) (b) (c) (d) (e)

Figure 6.2: Example depth results. (a) RGB input; (b) Result from Chapter 5 [25]; (c)
Our result (Scale 1: AlexNet); (d) Our result (Scale 1: VGG); (e) Ground Truth. Note
the color range of each image is individually scaled.

78

Depth Prediction

Ladicky[74]Karsch[68] Baig [2] Liu [82] Eigen[25] Ours(A) Ours(VGG)

δ < 1.25 0.542 – 0.597 0.614 0.614 0.697 0.769 higher
δ < 1.252 0.829 – – 0.883 0.888 0.912 0.950 is
δ < 1.253 0.940 – – 0.971 0.972 0.977 0.988 better
abs rel – 0.350 0.259 0.230 0.214 0.198 0.158
sqr rel – – – – 0.204 0.180 0.121 lower
RMS(lin) – 1.2 0.839 0.824 0.877 0.753 0.641 is
RMS(log) – – – – 0.283 0.255 0.214 better
sc-inv. – – 0.242 – 0.219 0.202 0.171

Table 6.1: Depth estimation measurements.

6.6.2 Surface Normals

Next we apply our method to surface normals prediction. We compare against the

3D Primitives (3DP) and “Indoor Origami” works of Fouhey et al. [30, 31]; Ladicky

et al. [75]; and Wang et al. [140]. As with the depth network, we used the full raw

dataset for training, since ground-truth normal maps can be generated for all images.

Since different systems have different ways of calculating ground truth normal maps, we

compare using both the ground truth as constructed in [30, 31] as well as the method

used in [115], using precomputed predictions supplied by the authors of method. Note

that Wang et al. use a method similar to [30] to construct training targets, while we use

the method of [115] for this purpose. We measure performance with the same metrics as

in [30]: The mean and median angle from the ground truth across all unmasked pixels,

as well as the percent of vectors whose angle falls within a series of three thresholds.

Results are shown in Table 6.2. The smaller version of our model performs similarly

or slightly better than Wang et al. , while the larger version substantially outperforms

all comparison methods. Note that of the ground truths, [30] is somewhat more pre-

processed compared to [115], and thus [30] tends to present flatter areas, while [115] is

noisier but keeps more details present.

Figure 6.3 and 6.4 show example predictions. Note the details captured by our method,

such as the curvature of the blanket on the bed in the first row, sofas in the second row,

and objects in the last row.

79

Surface Normal Estimation (GT [30])

Angle Distance Within t◦ Deg.
Mean Median 11.25◦ 22.5◦ 30◦

3DP [30] 34.2 30.0 18.5 38.6 50.0
Ladicky &al [75] 32.5 22.3 27.4 50.2 60.1
Fouhey &al [31] 35.1 19.2 37.6 53.3 58.9
Wang &al [140] 26.6 15.3 40.1 61.4 69.0
Ours (AlexNet) 23.1 15.1 39.4 63.6 72.7
Ours (VGG) 20.5 13.2 44.0 68.5 77.2

Surface Normal Estimation (GT [115])

Angle Distance Within t◦ Deg.
Mean Median 11.25◦ 22.5◦ 30◦

3DP [30] 37.7 34.1 14.0 32.7 44.1
Ladicky &al [75] 35.5 25.5 24.0 45.6 55.9
Wang &al [140] 28.8 17.9 35.2 57.1 65.5
Ours (AlexNet) 25.9 18.2 33.2 57.5 67.7
Ours (VGG) 22.2 15.3 38.6 64.0 73.9

Table 6.2: Surface normals prediction measured against different types of ground truth
acquisition. Each column shows results for a different ground truth.

RGB input 3DP [30] Ladicky&al [75] Wang&al [140] Ours (VGG) Ground Truth

Figure 6.3: Comparison of surface normal maps.

80

1

Figure 6.4: Example surface normals results.

81

6.6.3 Semantic Labels

NYU Depth

We finally apply our method to semantic segmentation, first also on NYUDepth. Because

this data provides a depth channel, we use the ground-truth depth and normals as input

into the semantic network, as described in Section 6.4.3. We evaluate our method on

semantic class sets with 4, 13 and 40 labels, described in [115], [16] and [48], respectively.

The 4-class segmentation task uses high-level category labels “floor”, “structure”, “furni-

ture” and “props”, while the 13- and 40-class tasks use different sets of more fine-grained

categories. We compare with several recent methods, using the metrics commonly used

to evaluate each task: For the 4- and 13-class tasks we use pixelwise and per-class ac-

curacy; for the 40-class task, we also compare using the mean pixel-frequency weighted

Jaccard index of each class, and the flat mean Jaccard index.

4-Class Semantic Segmentation
Pixel Class

Couprie &al [16] 64.5 63.5
Khan &al [51] 69.2 65.6
Stuckler &al [123] 70.9 67.0
Mueller &al [89] 72.3 71.9
Gupta &al ’13 [48] 78 –
Ours (AlexNet) 80.6 79.1
Ours (VGG) 83.2 82.0

13-Class Semantic
Pixel Class

Couprie &al [16] 52.4 36.2
Wang &al [140] – 42.2
Hermans &al [56] 54.2 48.0
Khan &al [51] ∗ 58.3 45.1
Ours (AlexNet) 70.5 59.4
Ours (VGG) 75.4 66.9

40-Class Semantic Segmentation
Pix. Acc. Per-Cls Acc. Freq. Jaccard Av. Jaccard

Gupta&al’13 [48] 59.1 28.4 45.6 27.4
Gupta&al’14 [49] 60.3 35.1 47.0 28.6
Long&al [83] 65.4 46.1 49.5 34.0
Ours (AlexNet) 62.9 41.3 47.6 30.8
Ours (VGG) 65.6 45.1 51.4 34.1

Table 6.3: Semantic labeling on NYUDepth v2
∗Khan&al use a different overlapping label set.

Results are shown in Table 6.3. We decisively outperform the comparison methods on

the 4- and 14-class tasks. In the 40-class task, our model outperforms Gupta et al. ’14

for both model sizes, and Long et al. with the larger size. Qualitative results are shown

in Fig. 6.7. Even though our method does not use superpixels or any piecewise constant

82

assumptions, it nevertheless tends to produce large constant regions most of the time.

Individual per-class performance is shown in Table 6.6.

Sift Flow

We confirm our method can be applied to additional scene types by evaluating on the Sift

Flow dataset [81], which contains images of outdoor cityscapes and landscapes segmented

into 33 categories. All images are 256x256, rather than 320x240 for NYUDepth, and so

our model outputs images of a different size. Note that we do not adjust any of the

convolutional kernel sizes or learning rates for this dataset — we simply transfer the

values used for NYUDepth directly; however, we adjust the random crop augmentations

by a few pixels so that feature maps can be combined evenly between scales.

Sift Flow Semantic Segmentation

Pix. Acc. Per-Class Acc.

Chapter 3 weighted kNN 77.1 32.5
Farabet &al (1) [28] 78.5 29.6
Farabet &al (2) [28] 74.2 46.0
Tighe &al [129] 78.6 39.2
Pinheiro &al [98] 77.7 29.8
Long &al [83] 85.1 51.7
Ours (1) 84.0 42.0
Ours (2) 81.6 48.2
Ours VGG feats (1) 86.8 46.4
Ours VGG feats (2) 83.8 55.7

Table 6.4: Semantic labeling on the Sift Flow dataset.

We compare against Tighe et al. [129], Farabet et al. [28], Pinheiro [98] and Long

et al. [83], as well as the weighted kNN system we presented in Chapter 3. Note that

Farabet et al. train two models, using either empirical or rebalanced class distributions

by resampling superpixels during training. We train a more class-balanced version of

our model by reweighting each class in the cross-entropy loss; we weight each pixel us-

ing weight αc = median freq/freq(c) where freq(c) is the number of pixels of class c

divided by the total number of pixels in images where c is present, and median freq is

the median of these frequencies.

83

Results are shown in Table 6.4; we compare regular (1) and reweighted (2) versions of

our model against comparison methods. Our model outperforms all but Long et al. by

substantial margins using our smaller ImageNet model, and performs similarly or bet-

ter to Long et al. with our larger model. We also greatly improve upon the weighted

kNN system we first developed in Chapter 3. Examples are shown in Fig. 6.5. This

demonstrates our model’s adaptability not just to different tasks but also different data.

Pascal VOC

In addition, we also verify our method using the Pascal VOC 2011 validation set. Sim-

ilarly to Long et al. [83], we train using the 2011 training set augmented with 8498

training images collected by Hariharan et al. [52], and evaluate using the 736 images

from the 2011 validation set not also in the Hariharan extra set. We perform online data

augmentations as in our NYUDepth and Sift Flow models, and use the same learning

rates. Because these images have arbitrary aspect ratio, we train our model on square

inputs, and scale the smaller side of each image to 256; at test time we apply the model

with a stride of 128 to cover the image (two applications are usually sufficient).

Pascal VOC Semantic Segmentation
Pix. Acc. Per-Cls Acc. Freq. Jaccard Av. Jaccard

Long&al [83] 90.3 75.9 83.2 62.7
Ours (VGG) 90.3 72.4 82.9 62.2

Table 6.5: Semantic labeling on Pascal VOC 2011.

Results are shown in table Table 6.5 and Fig. 6.6. Our model performs comparably to

Long et al. , even as it generalizes to multiple tasks, demonstrated by its adeptness at

depth and normals prediction.

84

Input Model (1) Model (2) Ground Truth

Pi
xe

lw
is

e
M

ax
La

be
ls

B
le

nd
ed

1

(a) (b) (c) (d)

Figure 6.5: Example semantic labeling results for Sift Flow. Top: Maximum predicted
label shown for each pixel; Bottom: Label colors blended according to softmax outputs.
For each row, we show: (a) input image; (b) without class rebalancing; (c) with class
rebalancing; (d) ground truth.

85

Figure 6.6: Example semantic labeling results for Pascal VOC 2011. For each image, we
show RGB input, our prediction, and ground truth.

86

!"
#$
%&
"'
$(
)
*#

+*
,$
%'
(-
%$
./
$/

0.123 456%*''(723123 8956%*''(723123 8956%*''(:;<2./(=;23>

(a) (b) (c) (d)

Figure 6.7: Example semantic labeling results. Top: Maximum predicted label shown
for each pixel; Bottom: Label colors blended according to softmax outputs. For each
row, we show: (a) input image; (b) 4-class labeling result; (c) 13-class result; (d) 13-class
ground truth. Note we feed the ground-truth depth and normals along with the RGB
image as input to our labeling network.

87

4-Class (pixel acc.)
floor struct furntr prop

Couprie et al. 87.3 86.1 45.3 35.5
Khan et al. 87.1 88.2 54.7 32.6
Stuckler et al. 90.7 81.4 68.1 19.8
Mueller et al. 94.9 78.9 71.1 42.7
Ours (AlexNet) 93.9 87.9 79.7 55.1

13-Class (pixel acc.)
bed books ceiling chair floor furniture objects picture sofa table tv wall window

Couprie et al. 30.3 31.7 33.2 44.4 68.0 28.5 10.9 38.5 25.8 18.0 18.8 89.4 37.8
Wang et al. 47.6 45.0 68.1 23.5 84.1 16.7 12.4 26.4 39.1 35.4 32.4 65.9 52.2
Hermans et al. 68.4 45.4 83.4 41.9 91.5 37.1 8.6 35.8 28.5 27.7 38.4 71.8 46.1
Khan et al. 38.1 13.7 62.6 - 87.3 - - - 29.8 10.2 6.0 86.1 15.9
Ours (AlexNet) 57.7 39.9 77.6 71.1 95.9 64.1 54.9 49.4 45.8 45.0 25.2 87.9 57.6

40-Class (Jaccard index)
bag bathtub bed blinds book bookshelf box cabinet ceiling chair

Gupta&al’13 0.65 33 55 44 4.4 20 4.8 48 59 40
Gupta&al’14 0.2 38.2 65.0 42.0 18.1 6.4 2.1 44.9 60.5 47.9
Ours (AlexNet) 1.5 29.1 51.9 43.9 16.6 31.5 4.5 45.0 75.2 46.0
Ours (VGG) 2.0 37.3 58.6 50.7 20.0 36.4 6.6 51.6 66.0 47.5

clothes counter curtain desk door dresser floor floor-mat fridge lamp
Gupta&al’13 6.9 47 34 10 8.3 22 81 22 15 6.8
Gupta&al’14 4.7 51.3 29.1 11.3 20.3 34.8 81.3 28.0 14.5 34.8
Ours (AlexNet) 12.9 53.4 35.4 11.3 17.6 26.3 83.3 27.4 15.7 33.6
Ours (VGG) 14.1 57.1 37.3 12.6 28.7 24.3 84.1 29.8 26.0 31.2

mirror night-stand paper person picture pillow shelves showerctn sink sofa
Gupta&al’13 19 20 1.9 16 40 28 5.1 18 26 44
Gupta&al’14 16.4 27.2 14.3 0.2 40.3 34.4 3.5 4.2 37.5 47.9
Ours (AlexNet) 32.6 24.2 20.3 27.5 45.0 31.0 8.9 21.7 39.4 40.4
Ours (VGG) 23.3 24.7 21.2 37.8 48.5 33.4 9.1 20.2 41.3 49.1

table toilet towel tv wall whitebd window other-furntr other-prop other-struct
Gupta&al’13 30 50 14 9.3 68 37 33 2 22 6.9
Gupta&al’14 29.9 55.1 16.3 31.0 68.0 14.2 32.6 6.1 23.1 7.1
Ours (AlexNet) 32.0 44.8 14.8 32.3 68.2 6.6 33.0 6.8 29.4 11.7
Ours (VGG) 35.7 44.0 20.0 35.9 71.1 39.7 37.4 8.8 28.7 13.1

Table 6.6: Individual class performance comparisons.

6.7 Probe Experiments

6.7.1 Contributions of Scales

We compare performance broken down according to the different scales in our model in

Table 6.7. For depth, normals and 4- and 13-class semantic labeling tasks, we train and

evaluate the model using just scale 1, just scale 2, both, or all three scales 1, 2 and 3.

For the coarse scale-1-only prediction, we replace the last fully connected layer of the

coarse stack with a fully connected layer that outputs directly to target size, i.e. a pixel

map of either 1, 3, 4 or 13 channels depending on the task. The spatial resolution is the

same as is used for the coarse features in our model, and is upsampled in the same way.

We report the “abs relative difference” measure (i.e. |D − D∗|/D∗) to compare depth,

mean angle distance for normals, and pixelwise accuracy for semantic segmentation.

First, we note there is progressive improvement in all tasks as scales are added (rows

88

Contributions of Scales

Depth Normals
4-Class 13-Class

RGB+D+N RGB RGB+D+N RGB
Pixelwise Error Pixelwise Accuracy
lower is better higher is better

Scale 1 only 0.218 29.7 71.5 71.5 58.1 58.1
Scale 2 only 0.290 31.8 77.4 67.2 65.1 53.1
Scales 1 + 2 0.216 26.1 80.1 74.4 69.8 63.2
Scales 1 + 2 + 3 0.198 25.9 80.6 75.3 70.5 64.0

Table 6.7: Comparison of networks for different scales for depth, normals and semantic
labeling tasks with 4 and 13 categories. Largest single contributing scale is underlined.

Effect of Depth/Normals Inputs

Scale 2 only Scales 1 + 2
Pix. Acc. Per-class Pix. Acc. Per-class

RGB only 53.1 38.3 63.2 50.6
RGB + pred. D&N 58.7 43.8 65.0 49.5
RGB + g.t. D&N 65.1 52.3 69.8 58.9

Table 6.8: Comparison of RGB-only, predicted depth/normals, and ground-truth
depth/normals as input to the 13-class semantic labeling task.

1, 3, and 4). In addition, we find the largest single contribution to performance is the

coarse Scale 1 for depth and normals, but the more local Scale 2 for the semantic tasks —

however, this is only due to the fact that the depth and normals channels are introduced

at Scale 2 for the semantic labeling task. Looking at the labeling network with RGB-

only inputs, we find that the coarse scale is again the larger contributer, indicating the

importance of the global view. (Of course, this scale was also initialized with ImageNet

convolution weights that are much related to the semantic task; however, even initializing

randomly achieves 54.5% for 13-class scale 1 only, still the largest contribution, albeit

by a smaller amount).

6.7.2 Effect of Depth and Normals Inputs

The fact that we can recover much of the depth and normals information from the RGB

image naturally leads to two questions: (i) How important are the depth and normals

inputs relative to RGB in the semantic labeling task? (ii) What might happen if we were

to replace the true depth and normals inputs with the predictions made by our network?

89

To study this, we trained and tested our network using either Scale 2 alone or both Scales

1 and 2 for the 13-class semantic labeling task under three input conditions: (a) the RGB

image only, (b) the RGB image along with predicted depth and normals, or (c) RGB plus

true depth and normals. Results are in Table 6.8. Using ground truth depth/normals

shows substantial improvements over RGB alone. Predicted depth/normals appear to

have little effect when using both scales, but a tangible improvement when using only

Scale 2. We believe this is because any relevant information provided by predicted

depths/normals for labeling can also be extracted from the input; thus the labeling

network can learn this same information itself, just from the label targets. However, this

supposes that the network structure is capable of learning these relations: If this is not

the case, e.g. when using only Scale 2, we do see improvement. This is also consistent

with Section 6.7.1, where we found the coarse network was important for prediction in

all tasks — indeed, supplying the predicted depth/normals to scale 2 is able to recover

much of the performance obtained by the RGB-only scales 1+2 model.

6.8 Discussion

Together, depth, surface normals and semantic labels provide a rich account of a scene.

We have proposed a simple and fast multiscale architecture using convolutional networks

that gives excellent performance on all three modalities. The models beat existing meth-

ods on the vast majority of benchmarks we explored. This is impressive given that many

of these methods are specific to a single modality and often slower and more complex

algorithms than ours. As such, our model also provides a convenient new baseline for

the three tasks.

One drawback of this approach is that it currently requires a large number of relatively

dense pixel maps for training. Possible future extensions of this approach include adapt-

ing it to be able to use more sparsely labeled targets, as well as its application to further

tasks, such as instance segmentation.

90

In the past four chapters, we have applied convolutional networks to multiple different

pixel-map prediction tasks: denoising, depth prediction, surface normals, and seman-

tic labeling. We also saw the ConvNet approach soundly improve over the kNN scene

parsing method first described in Chapter 3. The next two chapters look into convolu-

tional architecture sizing patterns in some more detail, then explore some ideas that use

ConvNets in unsupervised learning problems.

91

Chapter 7

Understanding Deep

Architectures using a

Recursive Convolutional Network

The work presented in this chapter appeared at the ICLR Workshops 2014 [26], and was

a collaboration with Jason Rolfe, Rob Fergus and Yann LeCun.

7.1 Introduction

The previous chapters in this thesis developed convolutional network models for use

in four pixel map prediction tasks: denoising, depth-from-camera, surface normals, and

semantic labels. Each used multiple layers of convolution to make these predictions based

on the input. However, many sizing factors needed to be set in order to define the models,

including the numbers of layers, feature maps, kernel pixel width, pooling, etc. Moreover,

each of these adjusted both the size of the activation units as well as the total number of

parameters. Are there any intuitions for how different configurations affect performance

and the system’s capabilities? This chapter aims to characterize some of these in the

92

context of a classification task, by evaluating the independent contributions of three

interlinked linked variables: The numbers of layers, feature maps, and parameters.

We accomplish this via a series of three experiments using a recursive convolutional

network model. This model is equivalent to a deep convolutional network where all

layers have the same number of feature maps and the filters (weights) are tied across

layers. By aligning the architecture of our model to existing convolutional approaches,

we are able to tease apart these three factors that determine performance. For example,

adding another layer increases the number of parameters, but it also puts an additional

non-linearity into the system. But would the extra parameters be better used expanding

the size of the existing layers? To provide a general answer to this type of issue is difficult

since multiple factors are conflated: the capacity of the model (and of each layer) and

its degree of non-linearity. However, we can design a recursive model to have the same

number of layers and parameters as the standard convolutional model, and thereby see

whether the number of feature maps (which differs) is important. Or we can match the

number of feature maps and parameters to see if the number of layers (and number of

non-linearities) matters.

Several recent works have found that stacks of multiple unpooled convolution layers are

essential to obtain high performance on image classification tasks, including all ImageNet

challenge winners for the past three years [73, 149, 113, 125, 116]. Hence the use of

multiple convolution layers is vital and the development of superior models relies on

understanding their properties. Our investigation in this chapter has particular bearing

in characterizing these layers, and our results are very much corroborative with the

circumstantial evidence provided by these recent systems.

We find that while increasing the numbers of layers and parameters each have clear bene-

fit, the number of feature maps (and hence dimensionality of the representation) appears

ancillary, and finds most of its benefit through the introduction of more weights. Our re-

sults (i) empirically confirm the notion that adding layers alone increases computational

power, within the context of convolutional layers, and (ii) suggest that precise sizing of

93

convolutional feature map dimensions is itself of little concern — more attention should

be paid to the numbers of parameters in these layers instead.

7.2 Related Work

In addition to unpooled stacks of convolutional maps, the model we employ also has

relations to recurrent neural networks. These are are well-studied models [60, 111, 124],

naturally suited to temporal and sequential data. For example, they have recently been

shown to deliver excellent performance for phoneme recognition [44] and cursive hand-

writing recognition [43]. However, they have seen limited use on image data. Socher

et al. [121] showed how image segments could be recursively merged to perform scene

parsing. More recently [120], they used a convolutional network in a separate stage to

first learn features on RGB-Depth data, prior to hierarchical merging. In these models

the input dimension is twice that of the output. This contrasts with our model which

has the same input and output dimension.

Our network also has links to several auto-encoder models. Sparse coding [93] uses

iterative algorithms, such as ISTA [5], to perform inference. Rozell et al. [105] showed

how the ISTA scheme can be unwrapped into a repeated series of network layers, which

can be viewed as a recursive net. Gregor & LeCun [45] showed how to backpropagate

through such a network to give fast approximations to sparse coding known as LISTA.

Rolfe & LeCun [103] then showed in their DrSAE model how a discriminative term can

be added. Our network can be considered a purely discriminative, convolutional version

of LISTA or DrSAE.

7.3 Approach

Our investigation is based on a multilayer Convolutional Network [77], for which all layers

beyond the first have the same size and connection topology. All layers use rectified linear

94

units (ReLU) [13, 37, 90]. We perform max-pooling with non-overlapping windows after

the first layer convolutions and rectification; however, layers after the first use no explicit

pooling. We refer to the number of feature maps per layer as M , and the number of

layers after the first as L. To emphasize the difference between the pooled first layer

and the unpooled higher layers, we denote the first convolution kernel by V and the

kernels of the higher layers by Wl. A per-map bias bl is applied in conjunction with

the convolutions. A final classification matrix C maps the last hidden layer to softmax

inputs.

Since all hidden layers have the same size, the transformations at all layers beyond the

first have the same number of parameters (and the same connection topology). In addi-

tion to the case where all layers are independently parameterized, we consider networks

for which the parameters of the higher layers are tied between layers, so that Wi = Wj

and bi = bj for all i, j. As shown in Fig. 7.1, tying the parameters across layers renders

the deep network dynamics equivalent to recurrence: rather than projecting through a

stack of distinct layers, the hidden representation is repeatedly processed by a consistent

nonlinear transformation. The convolutional nature of the transformation performed at

each layer implies another set of ties, enforcing translation-invariance among the param-

eters. This novel recursive, convolutional architecture is reminiscent of LISTA [45], but

without a direct projection from the input to each hidden layer.

7.3.1 Instantiation on CIFAR-10 and SVHN

We describe our models for the CIFAR-10 [72] and SVHN [91] datasets used in our

experiments. In both cases, each image Xn is of size 32×32×3. In the equations below,

we drop the superscript n indicating the index in the dataset for notational simplicity.

The first layer applies a set of M kernels Vm of size 8 × 8 × 3 via spatial convolution

with stride one (denoted as ∗), and per-map bias b0
m, followed by the element-wise

rectification nonlinearity. We use a “same” convolution (i.e. zero-padding the edges),

yielding a same-size representation P of 32× 32×M . This representation is then max-

95

...

convolution

W

Z3

M

8

M

...
Conv & ReLU

4x4 max pooling

Filters V

Feature map Z1

Input image X
32

32

8

8

M

M

Intermediate
representation P

}

...
Conv & ReLU

M

8

M
Feature map Z2

Filters W1

...
Conv & ReLU

M

8

M
Feature map Z3

Filters W2

...(a)

...
Conv & ReLU

4x4 max pooling

Filters V

Feature map Z1

Input image X
32

32

8

8

M

M

Intermediate
representation P

}

...
Conv & ReLU

M

8

M
Feature map Z2

Filters W

...
Conv & ReLU

M

8

M
Feature map Z3

Filters W

...(b)

...
Conv & ReLU

4x4 max pooling

Filters V

Feature map Z1

Input image X
32

32

8

8

M

M

Intermediate
representation P

}

...
Conv & ReLU

M

8

M

Feature map
Z2, Z3, ...
Filters W

(c)

Figure 7.1: Our model architecture prior to the classification layer, as applied to CIFAR
and SVHN datasets. (a): Version with un-tied weights in the upper layers. (b): Version
with tied weights. Kernels connected by dotted lines are constrained to be identical. (c):
The network with tied weights from (b) can be represented as a recursive network.

pooled within each feature map with non-overlapping 4×4 windows, producing a hidden

layer Z1 of size 8× 8×M .

Pm = max
�
0,b0

m +Vm ∗X
�

, Z1
i,j,m = max

i�,j�∈{0,··· ,3}

�
P4·i+i�,4·j+j�,m

�

All L succeeding hidden layers maintain this size, applying a set of M kernels Wl
m of

size 3 × 3 × M , also via “same” spatial convolution with stride one, and per-map bias

bl
m, followed by the rectification nonlinearity:

Zl
m = max

�
0,bl−1

m +Wl−1
m ∗ Zl−1

�

In the case of the tied model (see Fig. 7.1(b)), the kernels W l (and biases bl) are con-

strained to be the same. The final hidden layer is subject to pixel-wise L2 normalization

and passed into a logistic classifier to produce a prediction Y:

Yk =
exp(Y �

k)�
k exp(Y

�
k)

where Y�
k =

�

i,j,m

Ck
i,j,m · ZL+1

i,j,m/||ZL+1
i,j ||

96

The first-layer kernels Vm are initialized from a zero-mean Gaussian distribution with

standard deviation 0.1 for CIFAR-10 and 0.001 for SVHN. The kernels of the higher layers

Wl
m are initialized to the identity transformation Wi�,j�,m�,m = δi�,0 · δj�,0 · δm�,m, where

δ is the Kronecker delta. The network is trained to minimize the logistic loss function

L =
�

n log(Y
n
k(n)) and k(n) is the true class of the nth element of the dataset. The

parameters are not subject to explicit regularization. Training is performed via stochastic

gradient descent with minibatches of size 128, learning rate 10−3, and momentum 0.9:

g = 0.9 · g +
�

n∈minibatch

∂Ln

∂ {V,W,b} ; {V,W,b} = {V,W,b} − 10−3 · g

7.4 Experiments

7.4.1 Performance Evaluation

We first provide an overview of the model’s performance at different sizes, with both

untied and tied weights, in order to examine basic trends and compare with other current

systems. For CIFAR-10, we tested the models using M = 32, 64, 128, or 256 feature

maps per layer, and L = 1, 2, 4, 8, or 16 layers beyond the first. For SVHN, we used

M = 32, 64, 128, or 256 feature maps and L = 1, 2, 4, or 8 layers beyond the first. That

we were able to train networks at these large depths is due to the initialization of all

W l
m to the identity: this initially copies activations at the first layer up to the last layer,

and gradients from the last layer to the first. Both untied and tied models had trouble

learning with zero-centered Gaussian initializations at some of the larger depths.

Results are shown in Figs. 7.2 and 7.3. Here, we plot each condition on a grid according

to numbers of feature maps and layers. To the right of each point, we show the test error

(top) and training error (bottom). Contours show curves with a constant number of

parameters: in the untied case, the number of parameters is determined by the number

of feature maps and layers, while in the tied case it is determined solely by the number

of feature maps; Section 7.4.2 examines the behavior along these lines in more detail.

97

First, we note that despite the simple architecture of our model, it still achieves compet-

itive performance on both datasets, relative to other models that, like ours, do not use

any image transformations or other regularizations such as dropout [58, 139], stochastic

pooling [146] or maxout [40] (see Table 7.1). Thus our simplifications do not entail a

departure from current methods in terms of performance.

We also see roughly how the numbers of layers, feature maps and parameters affect

performance of these models at this range. In particular, increasing any of them tends

to improve performance, particularly on the training set (a notable exception to CIFAR-

10 at 16 layers in the tied case, which goes up slightly). We now examine the independent

effects of each of these variables in detail.

Figure 7.2: Classification performance on CIFAR-10 as a function of network size, for
untied (left) and tied (right) models. Contours indicate lines along which the total
number of parameters remains constant. The top number by each point is test error, the
bottom training error.

7.4.2 Effects of the Numbers of Feature maps, Parameters and Layers

In a traditional untied convolutional network, the number of feature maps M , layers

L and parameters P are interrelated: Increasing the number of feature maps or layers

increases the total number of parameters in addition to the representational power gained

by higher dimensionality (more feature maps) or greater nonlinearity (more layers). But

by using the tied version of our model, we can investigate the effects of each of these

98

Figure 7.3: Classification performance on Street View House Numbers as a function of
network size, for untied (left) and tied (right) models.

CIFAR-10 Test error (%)

Ours 16.0
Snoek et al. [119] 15.0
Ciresan et al. [12] 15.9
Hinton et al. [58] 16.6
Coates & Ng [13] 18.5

SVHN Test error (%)

Ours 3.1
Zeiler & Fergus (max pool) [146] 3.8
Sermanet et al. [112] 4.9

Table 7.1: Comparison of our largest model architecture (measured by number of pa-
rameters) against other approaches that do not use data transformations or stochastic
regularization methods.

three variables independently.

To accomplish this, we consider the following three cases, each of which we investigate

with the described setup:

1. Control for M and P , vary L: Using the tied model (constant M and P), we

evaluate performance for different numbers of layers L.

2. Control for M and L, vary P : Compare pairs of tied and untied models with the

same numbers of feature maps M and layers L. The number of parameters P

increases when going from tied to untied model for each pair.

3. Control for P and L, vary M : Compare pairs of untied and tied models with

99

the same number of parameters P and layers L. The number of feature maps M

increases when going from the untied to tied model for each pair.

Note the number of parameters P is equal to the total number of independent weights

and biases over all layers, including initial feature extraction and classification. This is

given by the formula below for the untied model (for the tied case, substitute L = 1

regardless of the number of layers):

P = 8 · 8 · 3 ·M + 3 · 3 ·M2 · L + M · (L+ 1) + 64 ·M · 10 + 10

(first layer) (higher layers) (biases) (classifier)

Case 1: Number of Layers

We examine the first of these cases in Fig. 7.4. Here, we plot classification performance

at different numbers of layers using the tied model only, which controls for the number

of parameters. A different curve is shown for different numbers of feature maps. For

both CIFAR-10 and SVHN, performance gets better as the number of layers increases,

although there is an upward tick at 8 layers for CIFAR-10 test error. The predominant

cause of this appears to be overfitting, since the training error still goes down. At these

depths, therefore, adding more layers alone tends to increase performance, even though

no additional parameters are introduced. This is because additional layers allow the

network to learn more complex functions by using more nonlinearities.

This conclusion is further supported by Fig. 7.5, which shows performance of the untied

model according to numbers of parameters and layers. Note that vertical cross-sections

of this figure correspond to the constant-parameter contours of Fig. 7.2. Here, we can

also see that for any given number of parameters, the best performance is obtained with

a deeper model. The exception to this is again the 8-layer models on CIFAR-10 test

error, which suffer from overfitting.

100

Experiment 1a: Error by Layers and Features (tied model)

Test
Error

Training
Error

(a) CIFAR-10 (b) SVHN

Figure 7.4: Comparison of classification error for different numbers of layers in the tied
model. This controls for the number of parameters and features. We show results for
both (a) CIFAR-10 and (b) SVHN datasets.

Case 2: Number of Parameters

To vary the number of parameters P while holding fixed the number of feature maps

M and layers L, we consider pairs of tied and untied models where M and L remain

the same within each pair. The number of parameters P is then greater for the untied

model.

The result of this comparison is shown in Fig. 7.6. Each point corresponds to a model

pair; we show classification performance of the tied model on the x axis, and performance

of the untied model on the y axis. Since the points fall below the y = x line, classification

performance is better for the untied model than it is for the tied. This is not surprising,

since the untied model has more total parameters and thus more flexibility. Note also

that the two models converge to the same test performance as classification gets better —

this is because for the largest numbers of L and M , both models have enough flexibility

101

Experiment 1b: Error by Parameters and Layers (untied model)

Test
Error

Training
Error

(a) CIFAR-10 (b) SVHN

Figure 7.5: Comparison of classification error for different numbers of parameters in
the untied model, for (a) CIFAR-10 and (b) SVHN datasets. Larger numbers of both
parameters and layers help performance. In addition, for a fixed budget of parameters,
allocating them in more layers is generally better (CIFAR-10 test error increases above
4 layers due to overfitting).

to achieve maximum test performance and begin to overfit.

Case 3: Number of Feature Maps

We now consider the third condition from above, the effect of varying the number of

feature maps M while holding fixed the numbers of layers L and parameters P .

For a given L, we find model pairs whose numbers of parameters P are very close by

varying the number of feature maps. For example, an untied model with L = 3 layers

and M = 71 feature maps has P = 195473 parameters, while a tied model with L = 3

layers and M = 108 feature maps has P = 195058 parameters — a difference of only

0.2%. In this experiment, we randomly sampled model pairs having the same number

of layers, and where the numbers of parameters were within 1.0% of each other. We

102

Experiment 2: Same Feature Maps and Layers, Varied Parameters

Test
Error

Training
Error

(a) CIFAR-10 (b) SVHN

Figure 7.6: Comparison of classification error between tied and untied models, control-
ling for the number of feature maps and layers. Linear regression coefficients are in the
bottom-right corners.

considered models where the number of layers beyond the first was between 2 and 8, and

the number of feature maps was between 16 and 256 (for CIFAR-10) or between 16 and

150 (for SVHN).

Fig. 7.7 shows the results. As before, we plot a point for each model pair, showing

classification performance of the tied model on the x axis, and of the untied model on

the y axis. This time, however, each pair has fixed P and L, and tied and untied models

differ in their number of feature maps M . We find that despite the different numbers of

feature maps, the tied and untied models perform about the same in each case. Thus,

performance is determined by the number of parameters and layers, and is insensitive to

the number of feature maps.

103

Experiment 3: Same Parameters and Layers, Varied Feature Maps

Test
Error

Training
Error

(a) CIFAR-10 (b) SVHN

Figure 7.7: Comparison of classification error between tied and untied models, con-
trolling for the number of parameters and layers. Linear regression coefficients in the
bottom-right corners.

7.5 Discussion

Above we have demonstrated that while the numbers of layers and parameters each

have clear effects on performance, the number of feature maps has little effect, once the

number of parameters is taken into account. This is perhaps somewhat counterintuitive,

as we might have expected the use of higher-dimensional representations to increase

performance; instead we find that convolutional layers are insensitive to this size.

This observation is also consistent with Fig. 7.5: Allocating a fixed number of parameters

across multiple layers tends to increase performance compared to putting them in few

layers, even though this comes at the cost of decreasing the feature map dimension.

This is precisely what one might expect if the number of feature maps had little effect

compared to the number of layers.

Our analysis employed a special tied architecture and comes with some important caveats,

104

however. First, while the tied architecture serves as a useful point of comparison leading

to several interesting conclusions, it is new and thus its behaviors are still relatively un-

known compared to the common untied models. This may particularly apply to models

with a large number of layers (L > 8), or very small numbers of feature maps (M < 16),

which have been left mostly unexamined. Second, our experiments all used a simplified

architecture, with just one layer of pooling. While we believe the principles found in

our experiments are likely to apply in more complex cases as well, this is unclear and

requires further investigation to confirm. Nevertheless, many recent systems make heavy

use of unpooled convolution stacks, and our investigation is particularly applicable in

this case.

The results we have presented provide empirical confirmation within the context of con-

volutional layers that increasing layers alone can yield performance benefits (Experiment

1a). They also indicate that filter parameters may be best allocated in multilayer stacks

(Experiments 1b and 3), even at the expense of having fewer feature maps. In conjunc-

tion with this, we find the feature map dimension itself has little effect on convolutional

layers’ performance, with most sizing effects coming from the numbers of layers and

parameters (Experiments 2 and 3). Thus, focus is best placed on these variables when

searching for model architectures.

105

Chapter 8

Convolutional Unsupervised

Methods

The work presented in this chapter is currently unpublished. Section 8.2 is a joint work

with Rob Fergus; Sections 8.3 and 8.4 are collaborations with Jason Rolfe, Rob Fergus

and Yann LeCun.

8.1 Introduction

In this chapter we explore three convolutional unsupervised methods. First, we describe a

Convolutional LISTA Autoencoder that approximates convolutional sparse coding using

a fast feed-forward network. Second, we apply an entropy cost that causes convolutional

features to organize into two different types, prototype templates and deformations,

that factors many higher-level edge features away from the lowest pixel-level information

necessary for reconstruction. Third, we outline how ZCA whitening can be adapted for

convolutional local whitening.

106

8.2 Convolutional LISTA Autoencoder

The Convolutional LISTA Autoencoder combines ideas from Gregor et al., “Learned

ISTA” [45] and Zeiler et al., “Deconvolutional Networks” [147, 148]. We first adapt the

LISTA network described in [45] to be convolutional, and use it as the encoder half of

an autoencoder: Rather than training the encoder to predict true sparse codes found

by an additional and expensive sparse-coding training phase, we instead train using

reconstruction error directly. We then stack autoencoder modules to learn successively

higher-level features, similar to a Deconvolutional network, but using fast, feed-forward

models at both training and test time.

8.2.1 Background

Before describing our LISTA autoencoder network, we first review the basics of ISTA and

LISTA. Given an input x and (convolutional) filter dictionary W , the Iterative Shrinkage

and Thresholding Algorithm (ISTA) [18, 105, 5] finds codes z that minimize the sparse

error 1
2 ||W

T ∗ z − x||22 + λ|z|1, producing codes that are both sparse (have few nonzero

elements) and reconstruct the input well. The procedure is based on a gradient descent

on z:

z0 = 0

zt = shα(zt−1 + η(W ∗ x− S ∗ zt−1)) (8.1)

where S = W ∗ W T is the lateral inhibition matrix of kernel similarities, and shα is a

shrink and threshold operation, i.e. shα(z) = max(0, z−α) if the codes z are constrained

to be nonnegative. The scalars α and η come from the strength λ of the sparsity term

and the descent rate, and can be determined analytically.

Each step of ISTA adds to the code z a small amount of the input filtered by W , thus

increasing the activations of matching filters, while at the same time subtracting out

107

activations of features similar to each another via the lateral inhibitions S (equal to

the all-to-all similarities). This effects an explaining-away mechanism to produce sparse

activations, however often takes a fairly large (e.g. 100 or more) number of iterations.

Learned ISTA (LISTA) [45] modifies this by decoupling the inhibition weights S from the

dictionary W , allowing each to be trained separately. The inference procedure Eqn. 8.1

is unrolled for fixed small number of steps (e.g. five), and trained to predict the true

sparse codes z of a training dataset via backpropagation. The network can use the

weight relaxations to learn to “shortcut” many of the steps needed for inference, so

that it quickly produces codes with few iterations. This comes at a cost of restricted

generalizability — the inference model is trained on a training set and may perform

arbitrarily on unrepresented inputs — however, we generally are only interested in a

small subset of the full unrestricted space, e.g. the set of natural images versus the set

of all real-valued images, so this is often a negligible tradeoff.

8.2.2 Single Layer

Our convolutional LISTA autoencoder, depicted in Fig. 8.1(a), uses a LISTA network

as the encoder half of an autoencoder. Rather than train a LISTA model to predict

true sparse codes, we further extend the network with separate encoder and decoder

weights We and Wd, in addition to inhibition weights S, and train it end-to-end using a

reconstruction objective. As in LISTA, our model produces a code zn from an input x

by applying an encoding matrix We, followed by successive applications of an inhibition

matrix S. The decoder then performs a linear convolution back to the input space using

the decoding weights Wd:

z0 = 0

zt = max(0, zt−1 + S ∗ zt−1 +We ∗ x− b) (8.2)

x� = W T
d ∗ zn

108

x!

zn!

x´!

+!

We! S!Wd
T! 5!"

max(. , 0)!
zt!

unpool/pool

x!

z1!

x´!

z2!

z1´!

p1!p1´!

Wd1
T! We1! S1!

Wd2
T! We2! S2!

!"#$%&'!(

(a) (b)

Figure 8.1: Convolutional LISTA Autoencoder architecture. (a) Single layer. (b) A stack
of two layers, with max-pooling switches transfered between encoder and decoder.

The operations perfomormed by this network are thus similar to ISTA sparse coding

inference, but with separately trainable encoder, decoder and lateral inhibition kernels.

For training, we use a l2 reconstruction and l1 sparsity-inducing loss, L(x) = 1
2 ||x

� −

x||22 + λ|zn|1. We also constrain the decoder weights so that each filter is unit norm.

Another variation that we also tried instead uses an inhibition kernel Sp to project back

to the input (pixel) space, rather than working between features in the code space. This

generally has fewer connections, but is faster, and the inhibition kernels can be visualized

directly. In this case, the network is defined by

z0 = 0

zt = max(0, zt−1 +We ∗ (Sp ∗ zt−1 + x)− b)

Filters learned using n = 5 iterations on MNIST and CIFAR-10 are shown in Fig. 8.2.

109

MNIST

(a) (b) (c)

CIFAR-10

(a) (b) (c)

Figure 8.2: Filters learned using MNIST and CIFAR-10 (for MNIST, red is positive and
blue negative). (a) Decoder Wd, (b) Encoder We, (c) Inhibition Sp. The encoder has
negative “shadows” around positive stroke centers that help turn off the activation soon
as the filter becomes unaligned; the inhibition kernels subtract out the stroke as it is
explained.

8.2.3 Stacking Multiple Layers

We can stack multiple LISTA autoencoders together, combined with spatial max-pooling

layers, to form a deep autoencoder network (Fig. 8.1(b)). This stacking is similar to that

in [147, 148], but uses LISTA autoencoders instead of iterative sparse coding inference.

Since the feed-forward encoder network performs many fewer iterations (about one one-

hundredth the number), it is much faster. Yet since it has a trained inference network,

it is still able to produce reasonable representations and filters.

Specifically, we first train a convolutional LISTA autoencoder as described in the above

section on the input images, using five z-iterations. This produces first-layer codes

z1, on which we perform spatial max-pooling to form pooled activations p1. We then

sequentially train a stack of two additional autoencoders and pooling, by minimizing the

reconstruction error of the pooled maps immediately below. This forms a stack of three

autoencoder applications.

110

Classification Error

Layer 1 0.42
Layer 2 0.37
Layer 3 0.34

Table 8.1: Classification error on CIFAR-10 using features from each layer of a Convo-
lutional LISTA Autoencoder. We train a single-layer softmax on top of fixed features
from each layer to evaluate their relation with semantic class labels. By comparison, a
similar fully-supervised network achieves an error of around 0.15.

We show reconstructions from the top 10 activations of each feature map in Figures 8.3

and 8.4, when trained on CIFAR-10 with ZCA whitening. We see that the network is

able to capture extended edges, as well as corners and edge or color combinations, at a

fraction of the cost of a similarly stacked Deconvolutional network.

Fixing the features at each layer, we also trained a 10-unit softmax classifier on top of

each layer’s features to check their relationship to predicting semantic labels. Results are

in Table 8.1: Classification performance improves between the first and second layers,

and the third layer is slightly better yet, though not by much.

111

Figure 8.3: Layer 2 reconstructions. We show reconstructions for the top 10 activations
for each second layer unit across the test set. The decoder unpools using the pooling
locations determined by the encoder.

112

F
ig
u
re

8.
4:

L
ay
er

3
re
co
n
st
ru
ct
io
n
s.

W
e
sh
ow

re
co
n
st
ru
ct
io
n
s
fo
r
th
e
to
p
10

ac
ti
va
ti
on

s
fo
r
ea
ch

th
ir
d
la
ye
r
u
n
it
ac
ro
ss

th
e
te
st

se
t.

T
h
e
d
ec
od

er
u
n
p
oo

ls
th
ro
u
gh

tw
o
p
oo

li
n
g
la
ye
rs
,
u
si
n
g
th
e
lo
ca
ti
on

s
d
et
er
m
in
ed

in
th
e
en

co
d
er

p
oo

li
n
g
la
ye
rs
.

113

8.3 Entropy Prototypes

Above, we described a convolutional LISTA autoencoder that learns approximate sparse

codes with an objective combining l2 reconstruction and l1 activation norm. A related

model, although not convolutional, is that of Rolfe et al. [103], which adds a classifica-

tion objective in addition to these two. They find that with all three objective terms,

weights are learned so that the activation units organize themselves into “prototypes”

and “deformation” units. Prototypes capture a mean template for each class, while

deformations edit the template to better reconstruct the input. The prototype units

display several characteristics that differentiate them from the deformations: They are

fewer in number, activate higher in magnitude, and turn on later in the network stack,

indicating that they form a higher-level semantic understanding.

In this section, we describe a system that learns units with similar characteristics con-

volutionally and in a purely unsupervised fashion, by substituting an entropy term for

the classification cost in [103]. Using this entropy cost, we can find convolutional “pro-

totypes” and “deformations”; applied with strided convolutions, these can factor out

larger low-level structures from small pixel details at each input window.

Given an input x, we use the convolutional LISTA autoencoder described in Section 8.2.2

to find a code z and reconstruction x�; however, the loss including entropy term is now

L(x) =
1

2
||x� − x||22 + λ|z|1 + µH

�
ez�
k e

z
k

�

where H(y) = −
�

i,j,k

yijk log yijk

That is, the additional cost tries to minimize the entropy of the features (indexed by k) at

each spatial location i, j. This happens when each spatial location has a strong activation

(prototype) and possibly several weak ones (deformations). It parallels a classification

cross-entropy loss, substituting the feature activations themselves for the ground-truth

class labels.

114

We also bound the l2 norm of the encoder weights We, and normalize z across the

feature dimension at each location before passing it to the softmax in the entropy cost.

These prevent the entropy term being satisfied by a degenerate case where a very large

activation is always placed on a single z unit at each spatial location (the corresponding

decoder for that unit is a self-canceling convolution kernel with checkers of positive and

negative that has zero net contribution over the image).

We trained this model on both MNIST and NORB. In each case, we first pretrained the

autoencoder using just the reconstruction and sparsity terms, then added in the entropy

cost. We used 8x8 kernels with a stride of 4 for the convolutions, so that in fact they

encoded overlapping tiles. NORB was preprocessed using convolutional ZCA (described

in the next section).

We show the filters the system learns in Fig. 8.5, sorted descending by mean nonzero

activation. For MNIST, the first few units (corresponding to prototypes) are all-positive

with uniform thickness. The deformation units that follow have both positive and nega-

tive values, which often edit the stroke thickness. For NORB, the prototypes are simple

edges, while deformation units are more complex. We also plot the mean nonzero acti-

vations for each unit in Fig. 8.6. For each dataset, there is a distinctive split between

prototype units, which have a large activation, and the deformations, which tend to be

smaller.

Reconstructions are shown in Figures 8.7 and 8.8. We show the pixel-space reconstruction

using only prototype units (chosen using a threshold on the mean nonzero activation),

only deformation units, and both. For MNIST, strokes tend to become more uniform

in thickness for prototype-only reconstruction, and are more limited in orientation due

to the more discrete set of prototypes. For NORB, prototype-only reconstructions also

use a more limited set of edges, appearing similar to line drawings. Thus many pixel-

level details are explained by the deformation units, allowing essential templates to be

factored into the prototypes.

115

MNIST

Decoder Encoder

NORB

Decoder Encoder

Figure 8.5: Autoencoder weights trained with per-location entropy cost, sorted descend-
ing by mean nonzero activation. Prototype units appear in the beginning. For MNIST,
these are all-positive with around uniform thickness; the deformation units that follow
have both positive and negative values, often editing the stroke thickness.

MNIST NORB

Figure 8.6: Mean nonzero activations: For each unit, we plot the mean of its activation
out of times it is nonzero (blue, left axis). We also show the fraction of the time the
unit is active when any unit at the same location is active (red, right axis). Units are
sorted according to mean nonzero activation. We find that there are two distinct kinds
of units, corresponding to prototypes and deformations.

116

Figure 8.7: Reconstructions of MNIST with per-location entropy cost. For each image,
we show (i) reconstruction using prototypes, (ii) using only deformations, (iii) recon-
struction with all units, (iv) original input image.

Figure 8.8: Reconstructions of NORB with per-location entropy cost. For each image,
we show (i) reconstruction using prototypes, (ii) using only deformations, (iii) recon-
struction with all units.

117

8.4 Convolutional ZCA Whitening

Whitening transformations aim to equalize frequencies in an image, so that low fre-

quencies do not dominate reconstruction costs; this enables unsupervised methods based

on reconstruction to learn codes that represent the full spectrum of the image, rather

than just constant regions. An effective whitening transformation is ZCA [72], which

constructs a linear transformation that explicitly scales each singular value to be 1. How-

ever, this transform is applied to the entire image, and requires the covariance between

all pixels. While reasonable for small images such as the 32x32 CIFAR, this is expensive

for larger data.

A simple adaptation of ZCA to convolutional application is to find the ZCA whitening

transformation for a sample of local image patches across the dataset, and then apply

this transform to every patch in a larger image. We then use the center pixel of each

ZCA’d patch to create the conv-ZCA output image. The operations of applying local

ZCA and selecting the center pixel can be combined into a single convolution kernel,

resulting in the following algorithm (explained using RGB inputs and 9x9 kernel):

1. Sample ∼10M random 9x9 image patches (each with 3 colors)

2. Perform PCA on these to get eigenvectors V and eigenvalues D.

3. Optionally remove small eigenvalues, so V has shape [npca x 3 x 9 x 9].

4. Construct the whitening kernel k:

for each pair of colors (ci, cj), set k[cj , ci, :, :] = V [:, cj , x0, y0]TD−1/2V [:, ci, :, :]

where (x0, y0) is the center pixel location (e.g. (5,5) for a 9x9 kernel)

Note the matrix multiplies in step 4 work on the PCA dimension of V and are “broad-

casted” over each spatial component of the V on the right (which maps the input to the

eigenspace).

We show the top 100 singular values for a random sample of 1M patches both before and

after convolutional ZCA processing in Fig. 8.9, using the RGB part of the NYU Depth

118

v2 dataset, rescaled to 320x240. We display plots for both 9x9 and 15x15 patches, but

used the same 9x9 ZCA kernel in each case. The kernel was computed using 10M 9x9

patch samples and keeping 50 PCA components.

Whitening kernels found using this method on NORB (grayscale, 96x96) and NYU Depth

v2 (using RGB only, rescaled to 320x240) are shown in Fig. 8.10. In both cases we use

9x9 kernels and keep 50 PCA components. We show transformed images in Fig. 8.11.

Figure 8.9: Top 100 singular values for 9x9 and 15x15 patches, before and after applying
convolutional ZCA with 9x9 filters and 50 PCA components, using the RGB part of NYU
Depth v2 rescaled to 320x240.

Figure 8.10: Convolutional ZCA whitening kernels, trained on NORB (left) and the
RGB part of NYU Depth v2 (right).

119

Figure 8.11: Example images before and after convolutional ZCA processing, for NORB
(top) and NYU Depth RGB (bottom).

120

Chapter 9

Conclusion

In this thesis we have developed convolutional network models that infer 2D pixel maps

for a variety of tasks, as well as exploring several related systems. In particular, we have

contributed the following.

1. We introduce methods to learn datapoint weights within kNN classification, and

use context to augment rare class instances (Chapter 3).

2. We develop a new method to restore images corrupted by dirt and rain on an

intervening glass pane using a local convolutional network, and show that training

convolutionally has the effect of decorrelating output patches. (Chapter 4).

3. We introduce a new system for predicting depth from a single image that integrates

global and local views using a series of convolutional networks applied at different

scales; we also introduce a scale-invariant error to handle much of the ambiguity

fundamentally present in this task (Chapter 5).

4. We develop a more general multiscale convolutional network model that can be

easily adapted to predict many types of 2D outputs effectively from a single image,

and apply it to predict depth, surface normals and semantic labels. Our model uses

a global-scale network whose field of view includes the entire image area to find low-

121

resolution feature maps, then refines predictions through a series of progressively

more local scales. (Chapter 6).

5. We investigate the independent effects of the numbers of layers, parameters and

feature maps by employing a recursive classification network, and find that higher

depth alone can result in higher performance while the number of feature maps is

less critical (Chapter 7).

6. We introduce Convolutional LISTA Autoencoders, which are computationally in-

expensive feed-forward emulations of deconvolutional networks, as well as an low-

entropy objective that factors prototype template features away from reconstruc-

tion details. We also construct a convolutional ZCA whitening operation that can

be applied using a single convolution kernel. (Chapter 8).

While the systems we presented are able to tackle a variety of problems, there are several

limitations and possible directions for future work.

Firstly, our systems require a relatively large amount of densely labeled data for train-

ing. While this is fairly inexpensive to acquire for depth and surface normals, it is more

difficult to obtain for semantic tasks, often requiring detailed human annotations. Some

of this might be relieved by handling sparser target maps, where many pixels are unla-

beled. While we can handle relatively small unlabeled regions by excluding them from

the training loss, it is unclear how well our methods would perform if most of the data

is unlabeled. In particular, there may be a problem in recognizing object boundaries,

since the precise boundary may not be available in the label map. Furthermore, not all

unlabeled regions can used directly as negative examples, since the model will eventually

learn to predict correct positives at these locations.

In addition, our models have only a limited interchange between between top-down and

bottom-up information. Our multiscale network includes top-down information influ-

encing bottom-up flow: The network looks back to the original image when refining the

output of coarser layers, thus the coarse prediction is recombined with a bottom-up sig-

122

nal from the image to produce each finer-scale prediction. However, the new finer-scale

prediction cannot then be used to influence the coarser scale — there is no continual cir-

culation between the scales and layers. Such signals might help disambiguate cases with

multiple interpretations, and enable the system to predict each individually, rather than

an average that splits the difference in error. For example, Deep Boltzmann Machines

can achieve this through iterative inference [106], settling on single interpretations rather

than averaging between them. Such methods may help in similar ways for our case.

Another possible extension is to use losses different from pixelwise accuracy. Pixelwise

loss leads to predictions that essentially average nearby plausible outputs in pixel space.

Other losses might push these averages into a more complex space, leading to qualita-

tively different errors. For instance, adversarial networks [39] have very recently been

used to generate small images. One might imagine applying this as a loss, feeding the

output of our network concatenated with the RGB input to a second discriminator net-

work, which attempts to distinguish it from the true data. Our network might then

average over different outputs not in pixel-space, but in “convolutional-network-space”.

Additionally, it may be possible to use data from device sensors as a means for “unsuper-

vised” feature learning. For instance, depth maps can be captured automatically, at less

expense than hand-annotated labels, yet predicting them still requires extracting many

relevant features. These representations may be able to generalize to other tasks better

than features found by reconstruction (although worse than labels created with the new

task in mind). Learning from sensor data may fall between “supervised” learning with

human annotations, and “unsupervised” learning in which only the inputs are available.

Lastly, it is also possible to extend convolutional networks to domains beyond even

images. There has already been much work using ConvNets for speech [57], text [14, 15]

and video [127], and the idea of a convolution also can even be generalized to non-

grid topologies [8], showing promise for a range of other graphs such as 3D meshes,

meteorological data, or network systems. Generalizing multi-scale networks in a similar

way may be effective for these areas as well.

123

Bibliography

[1] G. Alain and Y. Bengio. What regularized auto-encoders learn from the data

generating distribution. CoRR, abs/1211.4246, 2014.

[2] M. H. Baig and L. Torresani. Coarse-to-fine depth estimation from a single image

via coupled regression and dictionary learning. arXiv:1501.04537, 2015.

[3] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learn-

ing from examples without local minima. Neural networks, 2(1):53–58, 1989.

[4] P. Barnum, S. Narasimhan, and K. Takeo. Analysis of rain and snow in frequency

space. IJCV, 86(2):256–274, 2010.

[5] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[6] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based

image classification. In CVPR, 2008.

[7] Y.-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature pooling

in visual recognition. In ICML, 2010.

[8] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally

connected networks on graphs. ICLR, 2014.

[9] H. Burger, C. Schuler, and S. Harmeling. Image denoising: Can plain neural

networks compete with BM3D? In CVPR, 2012.

124

[10] H. Burger, C. Schuler, and S. Harmeling. Image denoising with multi-layer per-

ceptrons, part 2: training trade-offs and analysis of their mechanisms. In arXiv

preprint arXiv:1211.1552, 2012.

[11] J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using

constrained parametric min-cuts. PAMI, 2012.

[12] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flex-

ible, high performance convolutional neural networks for image classification. In

IJCAI, 2011.

[13] A. Coates and A. Y. Ng. The importance of encoding versus training with sparse

coding and vector quantization. In ICML, volume 8, pages 921–928, 2011.

[14] R. Collobert. Deep learning for efficient discriminative parsing. In AISTATS, 2011.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural language processing (almost) from scratch. Journal of Machine Learning

Research, 12:2493–2537, 2011.

[16] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. Indoor semantic segmentation

using depth information. ICLR, 2013.

[17] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising with block-

matching and 3D filtering. In Proc. SPIE Electronic Imaging, 2006.

[18] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for

linear inverse problems with a sparsity constraint. Communications on pure and

applied mathematics, 2004.

[19] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-fei. Imagenet: A large-scale

hierarchical image database. In CVPR, 2009.

[20] P. Devijver and J. Kittler. Pattern Recognition. A Statistical Approach. Prentice

Hall, 1992.

125

[21] B. Dong, H. Ji, J. Li, Z. Shen, and Y. Xu. Wavelet frame based blind image

inpainting. Applied and Comp’l Harmonic Analysis, 32(2):268–279, 2011.

[22] D. Eigen and R. Fergus. Nonparametric image parsing using adaptive neighbor

sets. In CVPR, 2012.

[23] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with

a common multi-scale convolutional architecture. arXiv preprint arXiv:1411.4734,

2014.

[24] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image taken through a window

covered with dirt or rain. In ICCV, 2013.

[25] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image

using a multi-scale deep network. NIPS, 2014.

[26] D. Eigen, J. Rolfe, R. Fergus, and Y. LeCun. Understanding deep architectures

using a recursive convolutional network. ICLR Workshop, 2014.

[27] M. Elad and M. Aharon. Image denoising via learned dictionaries and sparse

representation. In CVPR, 2006.

[28] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing with multiscale

feature learning, purity trees, and optimal covers. arXiv:1202.2160, 2012.

[29] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object

detection with discriminatively trained part-based models. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010.

[30] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d primitives for single image

understanding. In ICCV, 2013.

[31] D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In

ECCV, 2014.

[32] A. Frome, Y. Singer, and J. Malik. Image retrieval and classification using local

distance functions. In NIPS, 2006.

126

[33] K. Fukushima. Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. Biological cybernetics,

1980.

[34] K. Garg and S. Nayar. Detection and removal of rain from videos. In CVPR, pages

528–535, 2004.

[35] P. V. Gehler and S. Nowozin. On feature combination for multiclass object classi-

fication. In ICCV, 2009.

[36] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti

dataset. International Journal of Robotics Research (IJRR), 2013.

[37] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier networks. In AISTATS,

volume 15, pages 315–323, 2011.

[38] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood com-

ponents analysis. 2004.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.

[40] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout

networks. In ICML, 2013.

[41] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and

semnatically consistent regions. In CVPR, 2009.

[42] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-class segmentation

with relative location prior. IJCV, 2008.

[43] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber.

A novel connectionist system for improved unconstrained handwriting recognition.

PAMI, 31(5), 2009.

[44] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent

neural networks. In ICASSP, 2013.

127

[45] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML,

2010.

[46] J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. Dirty Glass: Rendering

Contamination on Transparent Surfaces. In Eurographics, Jun 2007.

[47] J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. Removing Image Artifacts

Due to Dirty Camera Lenses and Thin Occluders. SIGGRAPH Asia, Dec 2009.

[48] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization and recognition of

indoor scenes from rgb-d images. In CVPR, 2013.

[49] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning rich features from rgb-d

images for object detection and segmentation. In ECCV. 2014.

[50] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller,

and Y. LeCun. Learning long-range vision for autonomous off-road driving. Journal

of Field Robotics, 26(2):120–144, 2009.

[51] S. K. Hameed, M. Bennamoun, F. Sohel, and R. Togneri. Geometry driven seman-

tic labeling of indoor scenes. In ECCV. 2014.

[52] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous detection and

segmentation. In ECCV. 2014.

[53] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[54] G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded classifcation models:

Combining models for holistic scene understanding. In NIPS, 2008.

[55] G. Heitz and D. Koller. Learning spatial context: using stuff to find things. In

CVPR, 2008.

[56] A. Hermans, G. Floros, and B. Leibe. Dense 3d semantic mapping of indoor scenes

from rgb-d images. ICRA, 2014.

128

[57] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. Signal

Processing Magazine, IEEE, 29(6):82–97, 2012.

[58] G. Hinton, N. Srivastave, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-

nov. Improving neural networks by preventing co-adaptation of feature detectors.

arXiv:1207.0580, 2012.

[59] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, July 2006.

[60] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.

[61] D. Hoiem, A. Efros, and M. Hebert. Closing the loop on scene interpretation. In

CVPR, 2008.

[62] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. In ACM SIG-

GRAPH, pages 577–584, 2005.

[63] G. B. Huang and V. Jain. Deep and wide multiscale recursive networks for robust

image labeling. arXiv:1310.0354, 2013.

[64] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 1962.

[65] V. Jain and S. Seung. Natural image denoising with convolutional networks. In

NIPS, 2008.

[66] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric

image restoration models: A new state of the art. In ECCV, 2012.

[67] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-

stage architecture for object recognition? In Proceedings of the 12th International

Conference on Computer Vision, pages 2146–2153. IEEE, 2009.

129

[68] K. Karsch, C. Liu, S. B. Kang, and N. England. Depth extraction from video using

non-parametric sampling. In TPAMI, 2014.

[69] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant fea-

tures through topographic filter maps. In Computer Vision and Pattern Recogni-

tion, 2009. CVPR 2009. IEEE Conference on, pages 1605–1612. IEEE, 2009.

[70] K. Konda and R. Memisevic. Unsupervised learning of depth and motion. In

arXiv:1312.3429v2, 2013.

[71] J. Koplowitz and T. Brown. On the relation of the performance to editing in

nearest neighbor rules. Pattern Recognition, 13(3):251–255, 1981.

[72] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical

Report TR-2009, University of Toronto, 2009.

[73] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, 2012.

[74] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. In CVPR,

2014.

[75] L. Ladickỳ, B. Zeisl, and P. Marc. Discriminatively trained dense surface normal

estimation. ECCV, 2014.

[76] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In CVPR, pages 2169–2178,

2006.

[77] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proc. IEEE, 86(11):2278–2324, Nov 1998.

[78] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a

conventional camera with a coded aperture. In SIGGRAPH, 2007.

[79] A. Levin and B. Nadler. Natural image denoising: Optimality and inherent bounds.

In CVPR, 2011.

130

[80] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: label transfer via

dense scene alignment. In CVPR, 2009.

[81] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman. Sift flow: dense corre-

spondence across difference scenes. In ECCV, 2008.

[82] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation

from a single image. arXiv:1411.6387, 2014.

[83] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic

segmentation. CoRR, abs/1411.4038, 2014.

[84] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. of

the International Conference on Computer Vision ICCV, Corfu, pages 1150–1157,

1999.

[85] T. Malisiewicz and A. Efros. Recognition by association via learning per-exemplar

distances. In CVPR, 2008.

[86] T. Malisiewicz, A. Gupta, and A. Efros. Ensemble of exemplar-svms for object

detection. In ICCV, 2011.

[87] R. Memisevic and C. Conrad. Stereopsis via deep learning. In NIPS Workshop on

Deep Learning, 2011.

[88] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using monoc-

ular vision and reinforcement learning. In ICML, pages 593–600, 2005.

[89] A. C. Muller and S. Behnke. Learning depth-sensitive conditional random fields

for semantic segmentation of rgb-d images. ICRA, 2014.

[90] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann

machines. In ICML, pages 807–814, 2010.

[91] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits

in natural images with unsupervised feature learning. In NIPS Workshop, 2011.

131

[92] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation

of the spatial envelope. IJCV, 42:145–175, 2001.

[93] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

[94] M. Osadchy, Y. Le Cun, and M. L. Miller. Synergistic face detection and pose es-

timation with energy-based models. In Toward Category-Level Object Recognition,

pages 196–206. Springer, 2006.

[95] D. Palaz, R. Collobert, and M. Magimai-Doss. Estimating phoneme class condi-

tional probabilities from raw speech signal using convolutional neural networks. In

Interspeech, 2013.

[96] R. Paredes and E. Vidal. Learning weighted metrics to minimize nearest-neighbor

classification error. IEEE PAMI, 28(7):1100–1100, 2006.

[97] S. Paris and F. Durand. A fast approximation of the bilateral filter using a signal

processing approach. In ECCV, pages IV: 568–580, 2006.

[98] P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene

labeling. In ICML, 2014.

[99] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli. Image denoising using

scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Processing,

12(11):1338–1351, November 2003.

[100] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun. Efficient learning of sparse

representations with an energy-based model. In NIPS, 2006.

[101] X. Ren, L. Bo, and D. Fox. Rgb-(d) scene labeling: Features and algorithms. In

CVPR, 2012.

[102] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-

encoders: Explicit invariance during feature extraction. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), 2011.

132

[103] J. Rolfe and Y. LeCun. Discriminative recurrent sparse auto-encoders. In ICLR,

2013.

[104] M. Roser and A. Geiger. Video-based raindrop detection for improved image reg-

istration. In ICCV Workshop on Video-Oriented Object and Event Classification,

Kyoto, Japan, September 2009.

[105] C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen. Sparse coding

via thresholding and local competition in neural circuits. Neural Computation,

20(10):2526–2563, October 2008.

[106] R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In International

Conference on Artificial Intelligence and Statistics, 2009.

[107] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monocular

images. In NIPS, 2005.

[108] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3-d scene structure from a

single still image. TPAMI, 2008.

[109] R. Schapire. The boosting approach to machine learning: An overview. In D. D.

Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, editors, Nonlinear

Estimation and Classification. Springer, 2003.

[110] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. IJCV, 47:7–42, 2002.

[111] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recurrent

networks by evolino. Neural Computation, 19(3):757–779, 2007.

[112] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neural networks applied

to house numbers digit classification. In ICPR, 2012.

[113] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:

Integrated recognition, localization and detection using convolutional networks.

ICLR, 2013.

133

[114] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image cate-

gorization and segmentation. In CVPR, 2008.

[115] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support

inference from rgbd images. In ECCV, 2012.

[116] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. CoRR, abs/1409.1556, 2014.

[117] F. H. Sinz, J. Q. Candela, G. H. Bakır, C. E. Rasmussen, and M. O. Franz. Learning

depth from stereo. In Pattern Recognition, pages 245–252. Springer, 2004.

[118] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections

in 3d. 2006.

[119] J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimzation of machine

learning algorithms. In NIPS, 2012.

[120] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. Convolutional-

Recursive Deep Learning for 3D Object Classification. In NIPS, 2012.

[121] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Parsing natural scenes and

natural language with recursive neural networks. In ICML, 2011.

[122] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research, 15(1):1929–1958, 2014.

[123] J. Stuckler, B. Waldvogel, H. Schulz, and S. Behnke. Dense real-time mapping of

object-class semantics from rgb-d video. J. Real-Time Image Processing, 2014.

[124] I. Sutskever and G. Hinton. Temporal kernel recurrent neural networks. Neural

Networks, 23:239–243, 2010.

[125] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CoRR,

abs/1409.4842, 2014.

134

[126] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection.

In Advances in Neural Information Processing Systems, pages 2553–2561, 2013.

[127] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning

of spatio-temporal features. In Computer Vision–ECCV 2010, pages 140–153.

Springer, 2010.

[128] J. Tighe and S. Lazebnik. Superparsing: Scalable nonparametric image parsing

with superpixels. In ECCV, 2010.

[129] J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-

exemplar detectors. In CVPR, 2013.

[130] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In

CVPR, 1998.

[131] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional

network and a graphical model for human pose estimation. NIPS, 2014.

[132] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a

large database for non-parametric object and scene recognition. IEEE PAMI,

30(11):1958–1970, November 2008.

[133] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object

detection using brfs. In NIPS, 2005.

[134] Z. Tu. Auto-context and its application to high-level vision tasks. In CVPR, 2008.

[135] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-

posing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103. ACM, 2008.

[136] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. The Journal of Machine Learning Research, 11:3371–

3408, 2010.

135

[137] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. Hoggles: Visualizing

object detection features. In ICCV, 2013.

[138] L. Wan, D. Eigen, and R. Fergus. End-to-end integration of a convolu-

tional network, deformable parts model and non-maximum suppression. CoRR,

abs/1411.5309, 2014.

[139] L. Wan, M. Zeiler, Z. Sixin, Y. LeCun, and R. Fergus. Regularization of neural

networks using dropconnect. In ICML, 2013.

[140] A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. Multi-modal unsupervised

feature learning for rgb-d scene labeling. In ECCV. 2014.

[141] X. Wang, L. Zhang, L. Lin, Z. Liang, and W. Zuo. Deep joint task learning for

generic object extraction. NIPS, 2014.

[142] R. G. Willson, M. W. Maimone, A. E. Johnson, and L. M. Scherr. An optical model

for image artifacts produced by dust particles on lenses. In i-SAIRAS, volume 1,

2005.

[143] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural

networks. In NIPS, 2012.

[144] K. Yamaguchi, T. Hazan, D. Mcallester, and R. Urtasun. Continuous markov

random fields for robust stereo estimation. In arXiv:1204.1393v1, 2012.

[145] J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional

neural network. CoRR, abs/1409.4326, 2014.

[146] M. Zeiler and R. Fergus. Stochastic pooling. In ICLR, 2013.

[147] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus. Deconvolutional networks. In

CVPR, 2010.

[148] M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid

and high level feature learning. In ICCV, 2011.

136

[149] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.

In ECCV, 2014.

[150] S. Zhang and E. Salari. Image denosing using a neural network based non-linear

filter in the wavelet domain. In ICASSP, 2005.

[151] C. Zhou and S. Lin. Removal of image artifacts due to sensor dust. In CVPR,

2007.

[152] S. C. Zhu and D. Mumford. Prior learning and gibbs reaction-diffusion. PAMI,

19(11):1236–1250, 1997.

[153] D. Zoran and Y. Weiss. From learning models of natural image patches to whole

image restoration. In ICCV, 2011.

137

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Convolutional Networks
	Autoencoders

	Nonparametric Image Parsing using Adaptive Neighbor Sets
	Introduction
	Approach
	Global Context Selection
	Learning Descriptor Weights
	Adding Segments

	Algorithm Overview
	Experiments
	Stanford Background Dataset
	SIFT-Flow Dataset

	Discussion

	Restoring An Image Taken Through a Window Covered with Dirt or Rain
	Introduction
	Related Work

	Approach
	Network Architecture
	Training
	Effect of Convolutional Architecture
	Test-Time Evaluation

	Training Data Collection
	Dirt
	Water Droplets

	Baseline Methods
	Experiments
	Dirt
	Rain

	Discussion

	Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
	Introduction
	Related Work
	Approach
	Model Architecture
	Scale-Invariant Error
	Training Loss
	Data Augmentation

	Experiments
	NYU Depth
	KITTI
	Baselines and Comparisons

	Results
	NYU Depth
	KITTI

	Discussion

	Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
	Introduction
	Related Work
	Model Architecture
	Tasks
	Depth
	Surface Normals
	Semantic Labels

	Training
	Training Procedure
	Data Augmentation
	Combining Depth and Normals

	Performance Experiments
	Depth
	Surface Normals
	Semantic Labels

	Probe Experiments
	Contributions of Scales
	Effect of Depth and Normals Inputs

	Discussion

	Understanding Deep Architectures using a Recursive Convolutional Network
	Introduction
	Related Work
	Approach
	Instantiation on CIFAR-10 and SVHN

	Experiments
	Performance Evaluation
	Effects of the Numbers of Feature maps, Parameters and Layers

	Discussion

	Convolutional Unsupervised Methods
	Introduction
	Convolutional LISTA Autoencoder
	Background
	Single Layer
	Stacking Multiple Layers

	Entropy Prototypes
	Convolutional ZCA Whitening

	Conclusion
	Bibliography

