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Abstract

This paper proposes a non-parametric approach to scene
parsing inspired by the work of Tighe and Lazebnik [22]. In
their approach, a simple kNN scheme with multiple descrip-
tor types is used to classify super-pixels. We add two novel
mechanisms: (i) a principled and efficient method for learn-
ing per-descriptor weights that minimizes classification er-
ror, and (ii) a context-driven adaptation of the training set
used for each query, which conditions on common classes
(which are relatively easy to classify) to improve perfor-
mance on rare ones. The first technique helps to remove ex-
traneous descriptors that result from the imperfect distance
metrics/representations of each super-pixel. The second
contribution re-balances the class frequencies, away from
the highly-skewed distribution found in real-world scenes.
Both methods give a significant performance boost over
[22] and the overall system achieves state-of-the-art per-
formance on the SIFT-Flow dataset.

1. Introduction

Densely labeling a scene is a challenging recognition
task which is the focus of much recent work [7, 13, 20,
26, 27]. The difficulty stems from several factors. First,
the incredible diversity of the visual world means that each
region can potentially take on one of hundreds of different
labels. Second, the distribution of classes in a typical scene
is far from uniform, following a power-law (as illustrated in
Fig. 8). Consequently, many classes will have a small num-
ber of instances even in a large dataset, making it hard to
train good classifiers. Third, as noted by Frome et al. [3],
the use of single global distance metric for all descriptors
is insufficient to handle the large degree of variation found
in a given class. For example, the position within the im-
age may sometimes be an important cue for finding people
(e.g. when they are walking on a street), but on other oc-
casions position may be irrelevant and color a much better
feature (e.g. the person is close and facing the camera).

In this paper we propose a non-parametric approach to
scene parsing that addresses the latter two of these factors.

Our method is inspired by the simple and effective method
of Tighe and Lazebnik for scene parsing [22]. They show
excellent performance using nearest-neighbor methods on
image super-pixels, represented by a variety of feature types
which are combined in a naive-Bayes framework. We build
on their approach, introducing two novel ideas:

1. In an off-line training phase, we learn a set of weights
for each descriptor type of every segment in the train-
ing set. The weights are trained to minimize clas-
sification error in a weighted nearest-neighbor (NN)
scheme. Individually weighting each descriptor has
the effect of introducing a distance metric that varies
throughout the descriptor space. This enables it to
overcome the limitations of a global metric, as outlined
above. It also allows us to discard outlier descriptors
that would otherwise hurt performance (e.g. from seg-
mentation errors).

2. At query-time, we adapt the set of points used by the
weighted-NN classification based on context from the
query image. We first remove segments based on a
global context match. Crucially, we then add back pre-
viously discarded segments from rare classes. Here we
use the local context of segments to look up rare class
examples from the training set. This boosts the repre-
sentation of rare classes within the NN sets, giving a
more even class distribution that improves classifica-
tion accuracy.

The overall theme of our work is the customization of
the dataset for a particular query to improve performance.

1.1. Related Work

Apart from Tighe and Lazebnik [22], other related non-
parametric approaches to recognition include: the SIFT-
Flow scene parsing method of Liu et al. [13, 14]; scene clas-
sification using Tiny Images by Torralba et al. [23] and the
Naive-Bayes NN approach from Boiman et al. [1]. How-
ever, none of these involve re-weighting of the data, and
context is limited to a CRF at most.

Our re-weighting approach has interesting similarities
to Frome et al. [3] (and related work from Malisiewicz &
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Efros [15, 16]). Motivated by the inadequacies of a sin-
gle global distance metric, they use a different metric for
each exemplar in their training set, which is integrated into
an SVM framework. The main drawback to this is that
the evaluation of a query is slow (∼minutes/image). The
weights learned by our scheme are equivalent to a local
modulation of the distance metric, with a large weight mov-
ing the point closer to a query, and vice-versa. Furthermore,
the context-based training set adaptation in our method also
effects a query-dependent metric on the data.

The re-weighting scheme we propose has connections
to a traditional machine learning approach called editing
[2, 11]. These approaches are usually binary in that they ei-
ther keep or completely remove each training point. Of this
family, the most similar to ours is Paredes and Vidal [18],
who also use real-valued weights on the points. However,
their approach does not handle multiple descriptor types
and is demonstrated on a range of small text classification
datasets.

There is extensive work on using context to help recog-
nition [10, 17, 24, 25]; the most relevant approaches being
those of Gould et al. [5, 6] and in particular Heitz & Koller
[9] who use “stuff” to help find “things.” Heitz et al. [8] use
similar ideas in a sophisticated graphical model that reasons
about objects, regions and geometry. These works have
similar goals regarding the use of context but quite different
methods. Our approach is simpler, relying on NN lookups
and standard gradient descent for learning the weights.

Our work also has similar goals to multiple kernel learn-
ing approaches (e.g. [4]) which combine weighted feature
kernels, but the underlying mechanisms are quite different:
we do not use SVMs, and our weights are per-descriptor.
By contrast, the weights used in these methods are constant
across all descriptors of a given type. Finally, Boosting [19]
is an approach that weights each datapoint individually, as
we do, but it is based on parametric models rather than non-
parametric ones.

2. Approach

Our approach builds on the nearest-neighbor voting
framework of Tighe and Lazebnik [22] and uses three dis-
tinct stages to classify image segments: (i) global context
selection; (ii) learning descriptor weights; (iii) adding lo-
cal context segments. Stages (i) and (ii) are used in off-
line training, while (i) and (iii) are used during evaluation.
While stage (i) is adopted from [22], the other two stages
are novel and the main focus of our paper.

A query image Q consists of a set of super-pixel seg-
ments q, each of which we need to classify into one of C
classes. The training dataset T consists of super-pixel seg-
ments s, taken from images I1 to IM . The true class c∗s for
each segment in T is known. Each segment is represented
by D different types of descriptors (the same set of 19 used

in [22].1 Additionally, each image Im has a set global con-
text descriptors, {gm} that capture the content of the entire
image; these are computed in advance and stored in kd-trees
for efficient retrieval.

2.1. Global Context Selection

In this stage, we use overall scene appearance to re-
move descriptors from scenes bearing little resemblance to
the query. For example, the segments taken from a street
scene are likely to be distractors when trying to parse a
mountain scene. Thus their removal is expected to improve
performance. A secondary benefit is that the subsequent
two stages need only consider a small subset of the train-
ing dataset T , which gives a considerable speed-up for big
datasets.

For each query Q we compute global context descrip-
tors {gq}, which consists of 4 types: (i) a spatial pyramid
of vector quantized SIFT [12]; (ii) a color histogram spatial
pyramid and (iii) Gist computed with two different param-
eter settings [17]. For each of the types, we find the nearest
neighbors amongst the training set {gm}. The ranks across
the four types of context descriptor are averaged to give an
overall ranking. We then form a subset G of the segment-
level training database T that consists of segments belong-
ing to the top v images from our image-level ranking. We
denote the global match set G = GLOBALMATCHES(Q, v).
v is an important parameter whose setting we explore in
Section 4.

2.2. Learning Descriptor Weights

(a) (b) 

(c) (d) 

Figure 1. Toy example of our re-weighting scheme. (a): Initially
all descriptors have uniform weight. (b), (c) & (d): a probe point
is chosen (cross) and points in the neighborhood (black circle) of
the same class as the probe have their weights increased. Points of
a different class have their weights decreased, so rejecting outlier
points. In practice, (i) there are multiple descriptor spaces, one
for each descriptor type and (ii) the GLOBALMATCH operation
removes some of the descriptors.

1These include quantized SIFT, color, position, shape and area features.
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To learn the weights, we adopt a leave-one-out strat-
egy, using each segment s (from image Im) in the training
dataset T as probe segment (a pretend query). The weights
of the neighbors of s are then adjusted to increase the prob-
ability of correctly predicting the class of s.

For a query segment s, we first compute the global match
set Gs = GLOBALMATCHES(Im, v). Let the set of de-
scriptors of s be Ds. Following [22], the predicted class ĉ

for each segment is the one that maximizes the ratio of pos-
terior probabilities P (c|Ds)/P (c̄|Ds). After the applica-
tion of Bayes rule using a uniform class prior2 and making
a naive-Bayes assumption for combining descriptor types,
this is equivalent to maximizing the product of likelihood
ratios for each descriptor type:

ĉ = arg max
c

L(s, c) = arg max
c

�

d∈Ds

P (d|c)
P (d|c̄) (1)

The probabilities P (d|c) and P (d|c̄) are computed using
nearest-neighbor lookups in the space of the descriptor type
of d, over all segments in the global match set G. In the
un-weighted case (i.e. no datapoint weights), this is:

P (d|c) ∝ pd(c) =
nN
d (c)

nd(c)
, P (d|c̄) ∝ p̄d(c) =

n̄N
d (c)

n̄d(c)

where nN
d (c) is the number of points of class c in the near-

est neighbor set N of d, determined by taking the closest k
neighbors of d3. nd(c) is the total number of points in class
c. n̄N

d (c) is the number of points not of class c in the nearest
neighbor set N of d (i.e.

�
c� �=c n

N
d (c�)), and similarly for

n̄d. Conceptually, both nN
d (c) and nd(c) should be com-

puted over the match set G; in practice, this sample may
be small enough that using G just for nN

d (c) and estimating
nd(c) over the entire training database T can reduce noise.

To eliminate zeros in P (d|c̄), we smooth the above prob-
abilities using a smoothing factor t:

qd(c) = (nN
d (c) + n̄

N
d (c))2 · pd(c) + t (2)

q̄d(c) = (nN
d (c) + n̄

N
d (c))2 · p̄d(c) + t (3)

and define the smoothed likelihood ratio Ld(c):

Ld(c) =
qd(c)

q̄d(c)

We now introduce weights wdi for each descriptor d of each
segment i. This changes the definitions of nd and nN

d :

nd(c) =
�

i∈T

wdiδ(c
∗
i , c) = W

T∆

2Using the true, highly-skewed, class distribution P (c)/P (c̄) dramat-
ically impairs performance for rare classes.

3We also include all points at zero distance from d, so nN
d (c) is occa-

sionally larger than k.

n
N
d (c) =

�

i∈N

wdiδ(c
∗
i , c) = W

T∆N

where c∗i is the true class of point i and T is the training
set. Note that when using only the match set G to esti-
mate nd(c), the sum over T need only be performed over
G. In matrix form, W is the vector of weights wdi, and ∆
is the |T | × |C| class indicator matrix whose ci-th entry is
δ(ci, c). For neighbor counts, ∆N is the restriction of ∆ to
the neighbor set N — that is, its entries in rows i /∈ N are
zero.

Similarly, for n̄d(c) and n̄N
d (c) we use the complement

∆̄ = 1−∆:

n̄d(c) =
�

i∈T

wdiδ(c
∗
i , c̄) = W

T ∆̄

n̄
N
d (c) =

�

i∈N

wdiδ(c
∗
i , c̄) = W

T ∆̄N

To train the weights, we choose a negative log-likelihood
loss:

J(W ) =
�

s∈T

Js(W ) =
�

s∈T

− logL(s, c∗) + log
�

c∈C

L(s, c)

=
�

s∈T

�
−

�

d∈Ds

logLd(c
∗) + log

�

c∈C

�

d∈Ds

Ld(c)

�

The derivatives with respect to W are back-propagated
through the nearest neighbor probability calculations using
5 chain rule steps. The vector of weights Wd (the weights
for all segments on descriptor type d) is updated as follows:
Step 1:

∂nd

∂Wd
= ∆,

∂nN
d

∂Wd
= ∆N

,
∂n̄d

∂Wd
= ∆̄,

∂n̄N
d

∂Wd
= ∆̄N

Step 2:

∂pd

∂Wd
= (∆N − pd ·∆)/nd,

∂p̄d

∂Wd
= (∆̄N − p̄d · ∆̄)/n̄d

Step 3:

∂qd

∂Wd
= 2(nN

d + n̄
N
d ) · p · 1N + (nN

d + n̄
N
d )2 · ∂pd

∂Wd

∂q̄d

∂Wd
= 2(nN

d + n̄
N
d ) · p̄ · 1N + (nN

d + n̄
N
d )2 · ∂p̄d

∂Wd

Step 4:
∂ logLd

∂Wd
=

1

qd

∂qd

∂Wd
− 1

q̄d

∂q̄d

∂Wd

Step 5:

∂Js

∂Wd
= −∂ logLd

∂Wd
(c∗) +

1�
c L(c)

�

c

L(c) · ∂ logLd(c)

∂Wd
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where 1N = ∆N + ∆̄N , and products and divisions are
performed element-wise. The weight matrix is updated us-
ing gradient descent:

W ← W − η
∂Js

∂W

where η is the learning rate parameter. In addition, we en-
force positivity and upper bound constraints on each weight,
so that 0 ≤ wdi ≤ 1 for all d, i. We initialize the learning
with all weights set to 0.5 and η set to 0.1.

The above procedure provides a principled approach to
maximizing the classification performance, using the same
naive-Bayes framework of [22]. It is also practical to de-
ploy on large datasets: although the the time to compute a
single gradient step is O(|T ||C|), we found that fixing nd

and n̄d to their values with the initial weights yields good
performance, and limits the time for each step to O(|G||C|).

2.2.1 Effect of the Smoothing Parameter

Aside from smoothing the NN probabilities, the smoothing
parameter t also modulates Ld(c) as a function of nd(c),
the number of descriptors of each class. As such, it gives
a natural way to bias the algorithm toward common classes
or toward rare ones.

To see this, let us assume nN
d (c) + n̄N

d (c) = k (which
is usually the case; see footnote 3). This lets us rearrange
Ld(c) to obtain (omitting d for brevity and defining u =
t/k2):

L(c) =
nN (c)n̄(c) + u · n(c)n̄(c)
n̄N (c)n(c) + u · n(c)n̄(c)

Note that n(c)n̄(c) depends only on the frequency of class
c in the dataset, not on the NN lookup. The influence of
t therefore becomes larger for progressively more common
classes. So by increasing t we bias the algorithm toward
rare classes, an effect we systematically explore in Sec-
tion 4.

2.3. Adding Segments

The global context selection procedure discards a large
fraction of segments from the training set T , leaving a sig-
nificantly smaller match set G. This restriction means that
rare classes may have very few examples in G — and some-
times none at all. Consequently, (i) the sample resolution of
rare classes is too small to accurately represent their den-
sity, and (ii) for NN classifiers that use only a single lookup
among points of all classes (as ours does), common points
may fill a search window before any rare ones are reached.
We seek to remedy this by explicitly adding more segments
of rare classes back into G.

To decide which points to add, we index rare classes
using a descriptor based on semantic context. Since the
classifier is already fairly accurate at common background

classes, we can use its existing output to find probable back-
ground labels around a given segment. The context descrip-
tor of a segment is the normalized histogram of class labels
in the 50 pixel dilated region around it (excluding the seg-
ment region itself). See Fig. 2(a) & (b) for an illustration
of this operation, which we call MAKECONTEXTDESCRIP-
TOR.

To generate the index, we perform leave-one-out classi-
fication on each image in the training set, and index each
super-pixel whose class occurs below a threshold of r times
in its image’s match set G. In this way, the definition of
a rare class adapts naturally according to the query image.
This the BUILDCONTEXTINDEX operation.

When classifying a test image, we first classify the image
without any extra segments. These labels are used to gen-
erate the context descriptors as described above. For each
super-pixel, we look up the nearest r points in the rare seg-
ments index, and add these to the set of points G used to
classify that super-pixel. See Algorithm 2 for more details.

?

ContextIndex

Class Context Descriptor

Additional
Segments:

(a) (b)

(c)

Classes

……... ……...

Figure 2. Context-based addition of segments to the global match
set G. (a): Segment in the query image, surrounded by an initial
label map. (b): Histogram of class labels, built by dilating the
segment over the label map, which captures the semantic context
of the region. This is matched with histograms built in the same
manner from the training set T . (c): Segments in T with a similar
surrounding class distribution are added to G.

3. Algorithm Overview

The overall training procedure is summarized in Al-
gorithm 1. We first learn the weights for each seg-
ment/descriptor, before building the context index that will
be used to add segments at test time. Note that we do not
rely on ground truth labels for constructing this index, since
not all segments in T are necessarily labeled. Instead, we
use the predictions from our weighted NN classifier. NN
algorithms work better with more data, so to boost perfor-
mance we make a horizontally flipped copy of each training
image and add it to the training set.

The evaluation procedure, shown in Algorithm 2, in-
volves two distinct classifications. The first uses the
weighted NN scheme to give an initial label set for the query
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image. Then we lookup each segment in the CONTEXTIN-
DEX structure to augment G with more segments from rare
classes. We then run a second weighted classification using
this extended match set to give the final label map.

Algorithm 1 Training Procedure
1: procedure LEARNWEIGHTS(T )
2: Parameters: v, k

3: Wdi = 0.5
4: for all segments s ∈ T do

5: G =GLOBALMATCHES(Im, v)
6: NN-lookup to obtain ∆N

, ∆̄N

7: Compute ∂Js
∂Wd

8: Wd ← Wd − η
∂Js
∂Wd

9: end for

10: end procedure

11: procedure BUILDCONTEXTINDEX(T,W )
12: Parameters: v, k

13: ContextIndex = ∅
14: for all I ∈ T do

15: G =GLOBALMATCHES(I, v)
16: label map = CLASSIFY(I,G,W, k)
17: for all Segments s in I with rare ĉs in G do

18: desc = MAKECONTEXTDESCRIPTOR(s, label map)
19: Add (desc → I, s) to ContextIndex
20: end for

21: end for

22: end procedure

23: function CLASSIFY(I,G,W, k)
24: for all segments s ∈ image I do

25: kNN-lookup in G to obtain ∆N
, ∆̄N

26: Use weights W to compute n
N
d (c), n̄N

d (c) and Ld(c)
27: ĉs = argmax

c

�
d Ld(c)

28: end for

29: return label map ĉ

30: end function

Algorithm 2 Evaluation Procedure
1: procedure EVALUATETESTIMAGE(Q)
2: Parameters: v, k, r

3: G =GLOBALMATCHES(Q, v)
4: init label map = CLASSIFY(Q,G,W, k)
5: for all segments s ∈ Q do

6: desc = MAKECONTEXTDESCRIPTOR(s, init label map)
7: Hs = CONTEXTMATCHES(desc,ContextIndex,r)
8: end for

9: final label map = CLASSIFY(Q,G ∪H,W, k)
10: end procedure

4. Experiments

We evaluate our approach on two datasets: (i) Stanford
background [5] (572/143 training/test images, 8 classes)

and (ii) the larger SIFT-Flow [13] dataset (2488/200 train-
ing/test images, densely labeled with 33 object classes).

In evaluating sense parsing algorithms there are two met-
rics that are commonly used: per-pixel classification rate
and per-class classification rate. If the class distribution
were uniform then the two would be the same, but this is not
the case for real-world scenes. A problem with optimizing
pixel error alone is that rare classes are ignored since they
occupy only a few percent of image pixels. Consequently,
the mean class error is a more useful metric for applications
that require performance on all classes, not just the common
ones. Our algorithm is able to smoothly trade off between
the two performance measures by varying the smoothing
parameter t at evaluation time. Using a 2D plot for the pair
of metrics, the curve produced by varying t gives the full
performance picture for our algorithm.

Our baseline is the system described in Section 2, but
with no image flips, no learned weights (i.e. they are uni-
form) and no added segments. It is essentially the same
as the Tighe and Lazebnik [22], but with a slightly differ-
ent smoothing of the NN counts. Our method relies on the
same set of 19 super-pixel descriptors used by [22]. As
other authors do, we compare the performance without an
additional CRF layer so that any differences in local clas-
sification performance can be seen clearly. Our algorithm
uses the following parameters for all experiments (unless
otherwise stated): v = 200, k = 10, r = 200.

4.1. Stanford Background Dataset

Fig. 3 shows the performance curve of our algorithm on
the Stanford Background dataset, along with the baseline
system. Also shown is the result from Gould et al. [5],
but since they do not measure per-class performance, we
show an estimated range on the x-axis. While we convinc-
ingly beat the baseline and do better than Gould et al. 4, our
best per-pixel performance of 75.3% fall short of the current
state-of-the-art on the dataset, 78.1% by Socher et al. [21].
The small size of the training set is problematic for our algo-
rithm, since it relies on good density estimates from the NN
lookup. Indeed, the limited size of the dataset means that
the global match set is most of the dataset (i.e. |G| is close
to |T |), so the global context stage is not effective. Fur-
thermore, since there are only 8 classes, adding segments
using contextual cues gave no performance gain either. We
therefore focus on the SIFT-Flow dataset which is larger and
better suited to our algorithm.

4.2. SIFT-Flow Dataset

The results of our algorithm on the SIFT-Flow dataset
are shown in Fig. 4, where we compare to other approaches
using local labeling only. Both the trained weights and

4Assuming some a per-class performance consistent with their per-
pixel performance.
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Figure 3. Evaluation of our algorithm on the Stanford background
dataset, using local labeling only. x-axis is mean per-class clas-
sification rate, y-axis is mean per-pixel classification rate. Better
performance corresponds to the top right corner. Black = Our ver-
sion of [22]; Red = Our algorithm (without added segments step);
Blue = Gould et al. [5] (estimated range).

adding segments procedures give a significant jump in per-
formance. The latter procedure only gives a per-class im-
provement, consistent with its goal of helping the rare
classes (see Fig. 8 for the class distribution).

To the best of our knowledge, Tighe and Lazebnik [22]
is the current state-of-the-art method on this dataset (Fig. 4,
black square). For local labeling, our overall system out-
performs their approach by 10.1% (29.1% vs 39.2%) in
per-class accuracy, for the same per-pixel performance, a
35% relative improvement. The gain in per-pixel accuracy
is 3.6% (73.2% vs 76.8%).

Adding an MRF to our approach (Fig. 4, cyan curve)
gives 77.1% per-pixel and 32.5% per-class accuracy, out-
performing the best published result of Tighe and Lazeb-
nik [22] (76.9% per-pixel and 29.4% per-class ). Note that
their result uses geometric features not used by our ap-
proach. Adding an MRF to our implementation of their sys-
tem gives a small improvement over the baseline which is
significantly outperformed by our approach + an MRF.

Sample images classified by our algorithm are shown in
Fig. 9. We also demonstrate the significance of our results
by re-running our methods on a different train/test split of
the SIFT-Flow dataset. The results obtained are very similar
to the original split and are shown in Fig. 5.

In Fig. 6, we explore the role of the global context se-
lection by varying the number of image-level matches, con-
trolled by the v parameter which dictates |G|. For small
values performance is poor. Intermediate v gives improved
performance under both metrics. But if v is too large, G
contains many unrelated descriptors and the per-class per-
formance is decreased. This demonstrates the value of the
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Figure 4. Evaluation of our algorithm on the SIFT-Flow dataset.
Better performance is in the top right corner. Our implementa-
tion of [22] (black + curve) closely matches their published result
(black square). Adding flipped versions of the images to the train-
ing set improves the baseline a small amount (blue). A more sig-
nificant gain is seen when after training the NN weights (green).
Refining our classification after adding segments (red) gives a fur-
ther gain in per-class performance. Adding an MRF (cyan) also
gives further gain. Also shown is Liu et al. [13] (magenta). Not
shown is Shotton et al. [20]: 0.13 class, 0.52 pixel.
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Figure 5. Results for a different train/test split of the SIFT-Flow
dataset to one standard one used in Fig. 4. Similar results are ob-
tained on both test sets.

global context selection procedure, since without it G = T ,
and the per-class performance would be poor.

In Fig. 7 we visualize the descriptor weights, showing
how they vary across class and descriptor type (by averag-
ing them over all instances of each class, since they differ
for each segment). Note how the weights jointly vary across
both class and descriptor. For example, the min height
descriptor usually has high weight, except for some spa-
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See text for details. For comparison, the baseline approach using
a fixed v = 200 (and varying the smoothing t) is shown.
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Figure 7. A visualization of the mean weight for different classes
by descriptor type. Red/Blue corresponds to high/low weights.
See text for details.

tially diffuse classes (e.g. desert,field) where its weight is
low.

Fig. 8 shows the expected class distribution of super-
pixels in G for the SIFT-Flow dataset before and after the
adding segments procedure, demonstrating its efficacy. The
increase in rare segments is important in improving per-
class accuracy (see Fig. 4).

In Table 1, we list the timings for each stage of our al-
gorithm running on the SIFT-Flow dataset, implemented
in Matlab. Note that a substantial fraction of the time is
just taken up with descriptor computations. The search
parts of our algorithm run in a comparable time to other
non-parametric approaches [22], being considerably faster
than methods that use per-exemplar distance measures
(e.g. Frome et al. [3] which takes 300s per image).

5. Discussion

We have described two novel mechanisms for enhancing
the performance of non-parametric scene parsing based on
NN methods. Both share the underlying idea of customizing
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Figure 8. Expected number of super-pixels in G with the same true
class c

∗
s of a query segment, ordered by frequency (blue). Note

the power-law distribution of frequencies, with many classes hav-
ing fewer than 50 counts. Following the Adding Segments proce-
dure, counts of rare classes are significantly boosted while those
for common classes are unaltered (red). Queries were performed
using the SIFT-Flow dataset.

Learned Weights Full
Global Descriptors 2.8 2.8

Segment Descriptors 3.0 3.0
GLOBALMATCH 0.9 0.9

CLASSIFY 3.5 3.5
CONTEXTMATCHES - 0.4

CLASSIFY - 6.1
Total 10.3 16.6

Table 1. Timing breakdown (seconds) for the evaluation of a single
query image using the full system and our system without adding
segments (just global context match + learning weights). Note the
descriptor computation makes up around half of the time.

the dataset for each NN query. Rather than assuming that
the full training set is optimally discriminative, adapting the
dataset allows for better use of imperfectly generated de-
scriptors with limited power. Learning weights focuses the
classifier on more discriminative features and removes out-
lier points. Likewise, context-based adaptation uses infor-
mation beyond local descriptors to remove distractor super-
pixels whose appearances are indistinguishable from those
of relevant classes. Reintroducing rare class examples im-
proves density lost in the initial global pruning. On suffi-
ciently large datasets, both contributions give a significant
performance gain, with our best performance exceeding the
current state-of-the-art on the SIFT-Flow dataset. Our code
has been made available at
http://www.cs.nyu.edu/˜deigen/adaptnn/.
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Figure 9. Example images from the SIFT-Flow dataset, annotated with classification rates using per-pixel (“p”) and per-class (“c”) metrics.
Learning weights improves overall performance. Adding rare class examples improves classification of less common classes, like the boat
in (b) and sidewalk in (g). Failures include labeling the road as sand in (h) and the mountain as rock (a rarer class) in (c).
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