
Gradient Spread as an Intuition

for the Adam Optimizer

David Eigen

May 2025

1 Introduction

The Adam optimizer [1] is a variant of stochastic gradient descent that makes use
of stochasticity of samples to modulate step size. When the calculated gradient
is relatively constant between samples, step size is large; when gradients vary
between samples, step size decreases. The basic notion is that if steps are similar
from one sample to the next — and in particular, if they keep going in the same
direction — we can take large steps in that direction, since a sequence of small
steps of varying magnitude all in the same direction are they same as one large
step. Conversely, when gradients are different from one sample to the next —
and in particular, are in different directions —, we need to slow down and take
smaller steps in order not to jump over a curved region and accumulate samples
for better estimates.

The Adam optimizer tracks averages

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

where gt is the gradient at step t, and sets the parameter update step to

∆t = mt/
√
vt , θt = θt−1 − α∆t,

which normalizes the momentum gradient by an estimate of the “second mo-
ment”. But what is the significance of this normalization term?

2 Influence of Gradient Spread

Some limiting examples can help illustrate this. Say σt is the standard deviation
of the gradient samples at step t, and that mt and vt correspond to estimates
of the recent mean and second moment, so that σ2

t = E[g2]− E[g]2 = vt −m2
t .

This is not strictly the case in practice (described below in the experiments),
but we’ll use it for these illustrations.

1

Phrased in terms of the standard deviation, the update is

∆t =
mt√
vt

=
mt√

σ2
t +m2

t

First, consider the case where every gradient sample is the same (this corre-
sponds to a linear region in the function being optimized). Then the standard
deviation between samples is σ = 0, and the update is

∆t =
mt√
m2

t

= ±1

where ±1 = sign(mt). This means the sign of each element in the average
gradient determines the direction of the step, but steps always have the same
magnitude. If two different parameters (components) have different sized gra-
dients, but each is constant along a recent set of updates, we’ll use the same
update size for each of them. And why not? If there isn’t any variation to the
gradient samples as we step, it makes sense to take the maximum step along
each dimension, regardless of gradient magnitude.

However, a function whose gradient is always the same isn’t very inter-
esting (indeed, it must be linear if the derivative is constant). Now suppose
the gradients change between samples, and that their variation is measured by
σt = γt|mt|. Here we phrase the standard deviation as a multiple of the mean.
γt is sometimes known as the “spread” and describes variance factoring out the
magnitude of the sample values.

In this case where σt = γt|mt|, the update is

∆t =
mt√

σ2
t +m2

t

=
mt√

γ2
tm

2
t +m2

t

=
±1√
γ2
t + 1

again where ±1 = sign(mt).
The size of this step does not depend on the magnitude of the gradient —

only the spread, which is determined by the variance of samples relative to the
mean and not directly related to magnitudes. The only place the actual gradient
value is used is in the numerator, ±1 = sign(mt). That is: the running mean
gradient determines the direction of the step (i.e. its sign, positive or negative),
while the spread determines the size.

3 Experiments

The above analysis shows a separation between the determining factors for sign
and size, but it supposes ideal conditions where mt and vt correspond to the
true mean and second moment at the current time step. In practice, these are
estimated using exponential averages, which may not match the true values, par-
ticularly since they track “behind” the current timestep where the estimates are
applied, and furthermore, are estimated at different rates (β1 < β2). How much
does the intuition behind separation of direction and size apply in practice?

2

Here, we run a few experiments on small models, showing that this view
of the algorithm still applies when these assumptions are relaxed, though in
a softer form. In particular, the gradient mean has effect on the size of the
updates (which is likely beneficial in practice), though as might be expected,
not as much as in vanilla gradient descent. The relationships between step,
mean and spread identified before are clearly visible.

This set of measurements uses a small CNN on CIFAR-10: only two conv
layers and two fc layers with maxpooling, conv1 → maxpool → conv2 →
maxpool → fc1 → fc2, with batchnorm and relu between each weighted layer.
We look at β1 = β2 = 0.99, so that each mt and vt vary at the same rate, as well
as the usual values β1 = 0.9, β2 = 0.999, and compare to gradient descent with
momentum equal to β1. In each case, we measure step sizes using difference be-
tween weight values before and after each update, and calculate γt =

√
vt −m2

t

using the exponential averages for mt and vt. Scatter plots show one dot for
each update step t. Each dot measures the mean absolute value of gradient
mean or spread, first taken within each layer, then across layers. We only mea-
sure values for conv and fc weights W , excluding bias and batchnorm parameter
updates.

Figure 1 shows measurements for the same-rate case β1 = β2 = 0.99. While
the mean gradient corresponds directly to the update step for SGD, there is
little relation between them for Adam, after an initial period at the start of
training (the color of each dot indicates the step number t). Measured against

spread γt, the step follows closely to the shape of theoretical step 1/
√
γ2
t + 1

(dotted line) for Adam, while much more diffuse for SGD.
Figure 2 shows measurements for the more typically practical case of β1 =

0.9, β2 = 0.999. Here, the relation between spread and step is still visible, but
weaker — the mean gradient has more influence of the step size, due to the
faster estimation rate.

Another interesting to note, particularly visible in Figure 1, is that at later
training steps (lighter colors), the update steps for Adam don’t become con-
sistently smaller as they do for SGD, but tend to move around, going up and
down slightly as the sampling variation increases and decreases. When update
steps are smaller, there is less gradient variation between successive samples due
the smaller change in parameters between sample times. This lower variation
causes updates to increases, which increases variation, in turn lowering updates
back down in a cycle, causing oscillations.

4 Oscillation Near an Optimum

Variation (and hence spread) in the gradients can come from two sources: the
change in calculated gradient due to the function weights being updated by
the last optimization step, or randomization in choosing input samples or other
randomization in the function. In the case where all variation comes the param-
eter updates themselves (e.g., full batch and no randomization in the function),
what is the behavior of this around an optimum? Do updates slow down and

3

CIFAR-10, β1 = β2 = 0.99

b
si
ze
=
1
6

b
si
ze
=
1
0
0

Figure 1: CIFAR-10, β1 = β2 = 0.99. Top row: batch size 16, bottom row: batch size 100. (a) Loss
curve, (b) mean gradient mt vs average update size, (c) spread of gradient γt vs update size. Color
corresponds to step number t.

CIFAR-10, β1 = 0.9, β2 = 0.999

b
si
ze
=
1
6

b
si
ze
=
1
0
0

Figure 2: CIFAR-10, β1 = 0.9, β2 = 0.999. Top row: batch size 16, bottom row: batch size 100. (a)
Loss curve, (b) mean gradient mt vs average update size, (c) spread of gradient γt vs update size.
Color corresponds to step number t.

4

Quadratic f(x) = x2, β1 = β2 = 0.99

Figure 3: Optimization of the quadratic f(x) = x2: (a) Loss curve, (b) mean gradient mt vs average
update size, (c) spread of gradient γt vs update size

converge?
In vanilla gradient descent, the update is the gradient. For a convex function

and fixed learning rate that is appropriately small enough, each successive value
θt will be closer to the optimum than the previous one. So the gradient and
step ∆t = gt naturally goes to 0 and the process converges.

In the view of Adam optimizer where the update is ∆t = ±1/
√
γ2
t + 1, it

isn’t immediately obvious whether the updates converge, since they depend not
on the value of the gradient, but the amount of variation.

This oscillation behavior, even converging towards the optimum, can be
clearly seen in a toy example optimizing f(x) = x2. Figure 3(b) shows the mean
absolute value of the gradient df/dx versus step ∆t. While this zips straight to 0
for vanilla gradient descent, the Adam optimizer oscillates, with mean gradient
decreasing, passing by 0, and growing out again, since step sizes are determined
by spread. Figure 3(c) shows relation between spread and step size — step
values for gradient descent are fairly disperse those for Adam perfectly coincide
with the curve 1/

√
γ2 + 1 (in fact one may need to look closely to see this).

References

[1] Diederik P Kingma. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

5

